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Abstract
A key desideratum when explaining any ML pre-
diction is faithfulness: the explanation must loy-
ally describe the underlying predictor. But how
can one evaluate the faithfulness of methods that
explain black-box models, when the ground truth
rationale is unknown? To address this issue, we
propose a new evaluation method, Data Staining,
that trains a stained predictor (i.e., a model that
is biased to err systematically) and evaluates the
explainer’s ability to recover the stain. In contrast
to previous work, our method is simple, requires
no modification of the inputs, and generalizes
to a larger class of model types. Experiments
on text classification datasets with popular post-
hoc explanation algorithms (including a greedy
approach, LIME and SHAP) show that, despite
its simplicity, the greedy explainer consistently
outperformed other more complex explainers on
black-box models for our selected class of stains.

1. Introduction
Explanatory methods are a growing necessity for creating
and deploying complex machine learning models. While
inherently interpretable models exist, their performance sel-
dom competes with complex black-box models such as deep
neural networks. This has led to the development of mul-
tiple post-hoc explanatory techniques to explain black-box
predictors, and hence, potentially facilitate user-system trust
and system debugging without sacrificing high performance
(Ribeiro et al., 2016; Lundberg & Lee, 2017). But with many
possible explanatory methods to chose from, the question
then becomes which of these explanations to trust?

While there are multiple desirable features of a good ex-
planation, we focus specifically on measuring faithfulness,
i.e., the explanation’s ability to reflect the true behavior of
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Figure 1: An example of Data Staining to evaluate explanation
faithfulness. (A) An intelligible staining function alters the labels
of a region of the dataset. (C) A classifier trained on this stained
data will err systematically on examples from the selected region.
At test time, we can expect a faithful explanation to expose the
classifier’s flawed reasoning, and can therefore evaluate explainers
via their ability to uncover this reasoning.

the underlying predictor (Jacovi & Goldberg, 2020; Gilpin
et al., 2018).

When explaining black-box models, where the ground truth
reasoning is unknown, it is unclear how one can evaluate
whether an explanation method is faithful. In fact, prior
works rely on a variety of techniques and metrics. However,
many of these techniques suffer from issues including test-
ing models on out-of-distribution examples or generating
scores that cannot be compared across explanation methods.
Section 2 surveys these techniques and their potential issues.

To address these issues, we present Data Staining, a novel
method that can be used to benchmark an explainer’s faith-
fulness, even on black-box models. The key intuition behind
Data Staining is that by inducing a known, intelligible be-
havior during training, we can then evaluate the explainer’s
ability to recover that behavior, even when the model is a
black-box (Figure 1). We create these stained models by
training on systemically altered data, for example, where the
target labels have been flipped using an intelligible process.
As long as the explainer and the model use the same vocabu-
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lary (i.e., the explanation is in terms of the classifier’s input
features) Data Staining is model- and explainer-agnostic.

The key challenge with our approach is ensuring that the
stained models learn the intended behavior. For instance,
if the base model could mimic the predictions of the stain
using an alternate underlying behavior, our evaluation might
penalize explanations that correctly recover this alternate,
but faithful, behavior. In practice, we overcome this issue
by repeating and averaging our observations over multiple
stains. In summary we make the following contributions:

1. We identify issues with existing methods for evaluating
faithfulness including over-reliance on other potentially
unfaithful explainers, performing inference on out-of-
distribution samples, and the inability to generalize to
black-box models (Section 2).

2. We present a new method, Data Staining, to com-
pare the faithfulness of feature-importance explainers,
which does not require human annotation of data, and
generalizes to black-box models when the model and
explainer use the same vocabulary (Section 3).

3. We run experiments to compare the faithfulness of pop-
ular explainers on black-box models. For the class of
staining functions selected, we showed that, despite its
theoretical limitations, a greedy approach generally per-
formed better than both LIME and SHAP (Section 4).

2. Existing Measures of Faithfulness
Previous research deploys many different techniques meant
to show or imply that an explanation is faithful, i.e., it re-
flects the true underlying behavior of the model. Here we
discuss these techniques in more detail along with their
potential weaknesses.

Correlation to others A common method of testing ex-
plainers is to compare their output to other popular existing
methods (e.g., greedy algorithm), for example, by measuring
an overlap between the explanations each method generates
(Jain & Wallace, 2019; Alvarez Melis & Jaakkola, 2018).
However, without some way to establish the faithfulness of
the reference method, there is no reason to trust that either
is producing faithful explanations.

Local fidelity aims to evaluate the similarity of an explana-
tory model to the base model in a local vicinity. This method
is often seen as part the optimization of explainers that
leverage a local model (Ribeiro et al., 2016; Lundberg &
Lee, 2017; Yeh et al., 2019). However, because each ex-
plainer usually assumes a different definition of locality
(and therefore a unique measure of fidelity) these scores are
not directly comparable across methods. Additionally, this
method does not easily extend to explanatory techniques
that do not train local models, such as the greedy approach.

Change in log-odds evaluates explainers by measuring how
much a model’s output changes as the important features se-
lected by the explainers are removed from the input. (Shriku-
mar et al., 2017; Lundberg & Lee, 2017) A key concern with
this approach is that it relies on evaluating the model on out-
of-distribution examples. This makes it unclear whether a
large change is simply due to the model failing to generalize
to the modified examples. Hooker et al. (2018) address this
issue with their method, ROAR, which retrains the model
on a modified dataset where the important features have
been removed from all examples and instead measures the
decrease in test set accuracy. They avoid evaluating on
out-of-distribution examples; however, this method may be
prohibitively expensive, as it requires retraining the model
multiple times for each individual explainer.

Intelligible ground truth Another method to evaluate the
faithfulness of an explanatory method is to evaluate the ex-
plainers on inherently interpretable models such as linear
models (Ribeiro et al., 2016). This strategy more closely
aligns with our own goals: to create a method that compares
directly against a known ground truth. However, the limi-
tation of this setup is that the results may not generalize to
black-box models, on which the explainers are truly needed.

Introduced ground truth Methods of this form aim to in-
troduce a known set of important features into models and
use this induced behavior to evaluate explainers (Kim et al.,
2017; Yeh et al., 2019). Our method, Data Staining, extends
this line of research.

3. An Overview of Data Staining
Here we provide a high-level overview of a single pass of
Data Staining, in which we modify a select region of a
dataset using an intelligible process (i.e., we stain it), train a
classifier over this data, verify that it is learning to mimic the
process, and finally, evaluate explainers by their ability to
faithfully recover this locally-intelligible process. Later, we
explain why it is useful to repeat this process with multiple
stains.

Suppose X ,Y denote the instance and label spaces of a
dataset D ⊂ X × Y . We define a staining function as
a mapping from the original examples and labels to new,
stained target labels:

g : X ,Y → Y

Data Staining uses this staining function to create a new
stained dataset D′, in which the original target labels have
been systematically modified:

D′ = {(x, g(x, y)) | (x, y) ∈ D}

Suppose h is a model trained on D′ and emulates the be-
havior of our staining function g. If g uses an intelligible
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process, we can leverage our knowledge of g to evaluate the
faithfulness of methods for explaining h.

If eMh denotes an explanation generated using method M
for a classifier h, we define q(eg(x), e

M
h (x)) to denote a

scoring function that evaluates an explanation by comparing
its similarity to the internal explanation eg made available
by the staining function. We describe our selected scoring
function in Section 4.

The validity of our approach depends heavily on h learning
the same behavior as g, and hence, having similar explana-
tions. However, on black-box models, we only have access
to the inputs and outputs of the model. Therefore we can
only verify and guarantee at most a functional equivalence
between h and g. To enforce this, we perform a verification
step before evaluating explainers to ensure that on a held-out
test set, the predictions of h are functionally equivalent to g.

3.1. The Issue of Correlated Features

Correlated features pose a challenge when evaluating faith-
fulness using our method, as they do in any black-box sce-
nario. For instance, suppose our dataset contains two per-
fectly correlated features, f and f ′, and our method chooses
a staining function that uses only f . Since f = f ′ on ev-
ery training example, the stained model will have the same
loss whether it uses f or f ′ internally. If, after training, the
model uses f ′ where we expected f , Data Staining would
mis-penalize an explainer that correctly returned f ′. How-
ever, we note that Data Staining will, on average, penalize
every explainer in the same way, which is why we advocate
treating these faithfulness scores as a way of comparing two
explainers rather than as an absolute metric.

3.2. Repeated Staining to Evaluate Explainers

By averaging the observations over many different, ran-
domly sampled stains we can reduce the likelihood of
correlation-induced penalization in a way that ensures that
all explainers are treated identically. For example, again
suppose f is perfectly correlated with f ′, and the staining
function uses a single feature f to stain the training data.
If we compare two explainers, M1 and M2, then with one
staining run there is a 25% chance that M1 will appear un-
faithful (identifying f ′) while M2 recovers f . However, by
repeating the process with n random stains by sampling a
different f , we can model the chance of successively mis-
penalizing M1 over M2 using a binomial distribution. As a
result, the chance of relatively mis-penalizing one method
across all staining trials decreases exponentially (i.e., 1

4n )
and goes to zero as n → ∞. A similar argument can be
used for a more complex case when the staining function
uses multiple features or when the data contains partially
correlated features.

Algorithm 1 Evaluating explanations with Data Staining
Input: Original train set D, Original test set Dt, Classifier
type h, Explanatory method M , Space of staining functions
G, Scoring function S, Number of iterations N
Output: Faithfulness score s

1: function Eval:
2: s← 0
3: for i = 1 to N do
4: gi ← Sample staining function ∈ G
5: D′

i ← Stain D using gi
6: hi ← Train h on D′

i

7: if hi ≡ gi then
8: Xi ← Evaluation set ⊂ Dt

9: s← s+ S(hi,M, gi, Xi)
10: else
11: Retry iteration
12: end if
13: end for
14: s← s/N
15: end function

Suppose X denotes the set of examples we will evaluate
explainers on, we evaluate an explanatory method M ’s faith-
fulness to a stained predictor using the following equation:

S(h,M, g,X) =
1

|X|
∑
x∈X

q(eg(x), e
M
h (x)) (1)

Algorithm 1 outlines the final Data Staining procedure. We
describe our choice of staining functions, evaluation set, and
scoring metric in Section 4.

4. Experiments
Datasets We used three popular binary text classification
datasets, described in Table 1. The IMDb dataset consists
movie reviews (Maas et al., 2011), the Amazon reviews
dataset consists of cell phones reviews (McAuley et al.,
2015), and the Goodreads dataset consists of book reviews
(Wan & McAuley, 2018).

Dataset Size % + Correlation
IMDb 50,000 50 0.62
Amazon 173,000 86 0.60
Goodreads 555,317 91 0.38

Table 1: Summary of datasets used in our experiments including
the total number of examples in each dataset, the class balance
shown by the percentage of positive examples, and the maximum
pairwise correlation of terms in the dataset.

Classifiers We used five types of classifiers: logistic regres-
sion, decision trees, random forests, gradient boosted trees,
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and multi-layer perceptrons. While random forests, gradi-
ent boosted trees, and MLP are black-box models, logistic
regression and decision trees are intelligible. We included
them to sanity check whether their ground truth feature
importances align with the behavior induced using Data
Staining (RQ2).

Explainers We experimented using three model-agnostic,
post-hoc explainers that are widely-used, simple to imple-
ment, and help show the applicability of Data Staining:

1. LIME: Explains a prediction by perturbing the input
and fitting an interpretable model, e.g., a sparse linear
model learned to locally-mimic the original classifier.
It then returns the coefficients of the linear model as
feature importances (Ribeiro et al., 2016).

2. SHAP: Like LIME, SHAP locally learns a linear model
to explain a prediction. SHAP can be seen as a special
case of LIME, where certain hyper-parameters choices
lead to greater guarantees for the explanations includ-
ing local accuracy and consistency (Lundberg & Lee,
2017; Datta et al., 2016).

3. Greedy: Establishes feature importances by greedily
removing (or occluding) features from the input that
maximally change the model’s output (Jain & Wal-
lace, 2019; Alvarez Melis & Jaakkola, 2018). In our
case, we are removing words from the bag-of-words
representations used by the models.

Staining Functions In this work, we consider staining func-
tions based on rule lists, a class of intelligible models that
map inputs to outputs using a set of IF-THEN rules. In
our case, these rules select a examples from the training
set that contain pre-selected words and map them to a new,
stained label. This choice of function intends to influence
a stained model to locally assign high importance to a sub-
set of features and create a stain that saliency-explainers
can represent. Furthermore, we chose to uniformly stain
all examples in the selected region with the minority class.
This is no minimize interference from natural biases within
the dataset. Suppose DF ⊂ D denotes the subset of exam-
ples in the training set that contain the words (or features)
F = {f1, . . . , fk}. We used staining functions of the form:

g(x) := minorityClass(DF ) IF (x ∈ DF ) ELSE y

This choice allows us to repeat the staining procedure by
selecting random features F from the dataset vocabulary,
and easily modify the complexity of staining functions by
increasing or decreasing the number of features selected
|F |. Additionally, we hope that by selecting a relatively
straight-forward behavior (i.e., the presence of words) we
can minimize the likelihood of the existence of simpler
alternative explanations.
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Figure 2: Data Staining applied to an intelligible model (logistic
regression, amazon dataset). As demonstrated by the ground truth
explanation receiving a perfect score, we found that on all intelligi-
ble models (plots available in the full draft), Data Staining induced
the intended feature importances in the base model.

We used |F | = 2 in the experiments, because, we found that
|F | = 1 did not result in significant differences between
explainers. For each dataset-model pair, we ran 5 seeds,
where each seed pseudo-randomly selects a staining func-
tion, trains a stained predictor, and evaluates all explainers
on the evaluation set.1

Metrics As shown in Algorithm 1, to evaluate faithfulness,
in each iteration we generate and evaluate explanations for
the stained model’s predictions on a subset of the test set
Xi ⊂ Dt whose labels have be flipped by staining.

Xi = {(x, y) ∈ Dt|gi(x) 6= y}

We evaluate on this subset because on these examples the
staining procedure is more likely to introduce a new strong
correlation between features F used by the staining function
and the stained label. For example, if a test review was
originally negative but contained F , this review is more
likely to be classified positive mainly due to the presence of
F . Since our rule-based staining functions do not provide
the relative importances of individual features, but rather an
unordered set of important features, we evaluate explainers
by measuring recall of gold features F . For a given budget
b of top features, let F̂M

b (x) denote the most important
features predicted by an explanation eMh .

q(eg(x), e
M
h (x)) =

|F ∩ F̂M
b (x)|
|F |

(2)

RQ1: Does Data Staining result in models that are sys-
tematically biased?

As outlined in Section 3, before evaluating explainers we
verify whether our method produces models that accurately

1Due to computational constraints, we explain only 50 ran-
domly selected examples from the evaluation set per seed. How-
ever, in practice, we still observed reasonably tight confidence
intervals.
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Figure 3: Comparison of explainers across decision trees and multiple black-box models across our selected datasets for |F | = 2.
The results for logistic regression are not included as there was no significant difference between explainers. While SHAP and LIME
performed better on decision trees, on most black-box models the greedy explainer performed the best, despite its simplicity.

mimic the staining function on the region DF . This step
is important because if the model does not result in sim-
ilar predictions, we would not expect its explanations to
match the staining function’s explanation. On all model
types we tested, we were able to learn stained models that
near-perfectly mimicked the staining function on region
DF , whilst maintaining overall accuracy similar to an un-
stained version of the model. We set a minimum threshold of
90% agreement between the staining functions and stained
models on DF before continuing. On average, the stained
models and functions had 95% agreement.

Complete results for this test, including verifications for
each model, are included in the full draft.2

RQ2: Does Data Staining accurately measure faithful-
ness when applied to intelligible models?

In addition to verifying that we are able to train black-box
models to be functionally equivalent to the staining func-
tion, as a sanity check we verify that the procedure helps
us evaluate faithfulness on intelligible models. For both
intelligible model types tested (logistic regression and de-
cision trees), we found that the ground truth explanations
provided by the base models consistently received the max-
imum possiblescore (Equation 2) across all datasets and
seeds. Figure 2 shows this result for logistic regression on
the Amazon dataset.

RQ3: Does a single method produce the most faithful
2Full draft available at: https://github.com/data-stain/data-

staining/

explanations?

Figure 3 shows how the average recall of explanations gener-
ated by each explainer changes as a function of explanation
budget. The results for logistic regression were not included
in this figure, as there was no significant difference among
the recall of the explainers.

While, we found that there was no single explainer that
strictly produced the most faithful explanations across all
datasets and models, in the majority of cases, the greedy
explainer was consistently the top performer, or among top
performers. The main exception to this rule was that on
decision trees, Greedy consistently under-performed. The
same result was also noted by Ribeiro et al. (2016) during
their evaluation of LIME on intelligible models.

This result is surprising, because we know that Greedy does
not consider feature interactions when calculating impor-
tances. Our selected class of staining functions, however,
do rely on an interaction between the selected gold features.
Despite this fact, Greedy seems to outperform other popular
methods that take do interactions into account.

We also found that SHAP was consistently under-
performing on XGBoost. This may be partly explained
by the fact that we used the model-agnostic implementation
of SHAP rather than TreeSHAP (Lundberg et al., 2018),
which is tailored to be more performant on ensemble tree
methods. Using the model specific implementation might
have reduced this disparity. However, interestingly, we did
not observe this same behavior on random forests.

https://github.com/data-stain/data-staining/blob/master/Comparing_Explainers_with_Biased_Models.pdf
https://github.com/data-stain/data-staining/blob/master/Comparing_Explainers_with_Biased_Models.pdf
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It is important to note that these relative measures of faith-
fulness do not necessarily hold case across domains. We
focus exclusively on binary text classification and a limited
class of stains, which may be more suited to Greedy than
domains with more complex inputs and interactions, such
as healthcare or image data. Additionally, we only evaluate
faithfulness in our experiments, while there are other many
desirable qualities of explanations that should be considered
before any explainer is deployed.

5. Conclusion
We proposed a new method to compare faithfulness of ex-
plainers by training systematically biased models. When the
explainer creates explanations in terms of the features used
by the underlying model, Data Staining is feasible as it does
not require human intervention, and is model- and explainer-
agnostic. Thus, the method allows comparing explainers
built for black-box models. However, since the presence of
correlated feature may cause our method to miss alternate
but faithful explanations, scores generated using Data Stain-
ing should be used to compare the relative performance of
explainers. Experiments on text classification datasets with
multiple popular models and explainers revealed that, em-
pirically, the greedy explainer consistently performs better
than more complex methods such as LIME and SHAP, for a
selected class of stains.

In addition to applying Data Staining to benchmark a wider
variety of explainers, future research should explore devel-
oping novel staining functions to test explainers, and apply
data staining to evaluate explanation methods on tasks be-
yond text classification such as natural language inference
or question answering (Clark et al., 2019).
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