Models In Model-Based User Interface Design

Krzysztof Gajos
kgajos@cs.washington.edu

May 21, 2003

1 Introduction

For the sake of the clarity of my thinking, I set out to find out what kind of information usually resides in
“models” in model-based user interface research. This, hopefully, will help us understand what functionality we
want SUPPLE to provide and, consequently, what information we need to provide it with.

2 Goals of Model-Based UI Research

It seems that the original motivation for research on model-based user interfaces stemmed from the observation
that a large portion (up to a half) of any serious program is devoted to supporting the UIL. Furthermore, the UI
code is brittle, difficult to maintain and, as a result, the UI is difficult to change, prototype, etc. More recently,
in the advent of ubiquitous computing, the heterogeneity of presentation devices offered extra incentive for the
research. Still, it is important to note that the model-based Ul community seems to be concerned not only with
flexible and platform-independent specification of the displayed widgets, but also with automating those aspects
of the interface that have to do with the task flow, interaction with the underlying application, and so on.

The typical approach is to specify the model of the interface and then compile it into an efficient language
(e.g. C, Java) and then compile the resulting code together with the rest of the application for fast execution.

Since the field is concerned with ease of development, testing and deployment, merely creating complex spec-
ification languages was not sufficient to declare success — significant portion of the effort is going into developing
appropriate user interface development environments (e.g. [6]).

Another thing worth noting, is that, traditionally, presentation models are static once created and compiled.
Only recently did people started noticing that certain aspects of the presentation may need to be delayed until
execution time to accomodate the growing diversity of interaction devices. The ideas of Eisenstein, at al. [1] are
particularily close to ours. I will summarize some of them in Section 4.

3 Classes Of Models

Model-based UI community seems to distinguish among the following major classes of models:

e Application Model defines the capabilities of the application. In case of [7] this means describing various
classes (in the OO sense) in terms of their attributes, exceptions that methods may throw, methods together
with their preconditions and, finally, a list of events published by the class.

e Task And Dialogue Models — although people seem to consider them separate, both [7] and [1] collapse
the two into a single structure. The talk/dialogue model describes the tasks that user can perform with the
system. The tasks include presenting information to the user, obtaining information from the user, invoking
application functionality, etc.

e Presentation Model describes how the information is to be presented to the user. It seems that it
describes the interface in terms of such low level elements as buttons, menus, etc.

Desired
Input

TM‘;Na

Interaction Screen Available
Capabilities Resolution Bandwidth

Very
High Low

[Lisbox | / [EditField | .

S st Imagemap | | Screen
- Resolution

High

Listbox
Low

Keyboard
Edit Field

Low

Edit Field
With Keypad

Figure 1: A sample decision tree for creating a presentation model at run time; the tree accomodates a number
of constraints such as screen resolution, interaction capabilities and available bandwidth. Copied from [1]

e Platform Model contains information specific to the target device: i.e. its resolution, color depth, input
capabilities, and so on. This level of modeling has emerged most recently in response to the need for making
part of the presentation modeling dynamic.

Others expand this list even further to include the models of the user, the environment and the data [§].

The different models may be specified in different languages (e.g. application model may be encoded as an
interface specification in an extension to a traditional programming language, task model may be specified as
objects and methods). It seems that at least a few authors have identified method composition as a hard research
problem [5]. Schreiber seems to have solved the problem by creating a single modeling system that encompases
all aspects of the model in a single representation [4]. I am still reading this paper.

4 The Eisenstein, et al. Paper

This paper [1], titled Adapting to Mobile Contexts with User-Interface Modeling, was presented at a workshop
on mobile systems and applications (shortly afterwards a somewhat less informative LPU [2] was presented at
IUT01). It opens with a description of what model-based Ul generation is. It eventually points out that the
presentation model is usually fixed at compile time and thus cannot be changed dynamically later. This might
have been acceptable in the era of desktops but given the wide variety of mobile devices currently available, this
needs to change. He shows that the presentation model could be based on Abstract Interaction Objects (AIOs)
that can be subclassed to form instantiations for particular devices. Interestingly, these subclasses, according
to the paper, should still reside in the presentation model of the application. What changes is that the right
instance of an AIO is chosen at run time. He quotes many of the same constraints for choosing the right widget
as those that we came up with: screen size, mouse Vs. stylus Vs. keyboard interaction. He also adds some others:
available bandwidth for downloading elements and interacting with the application, and the context the device
might be used in. The last point refers to the fact that the choice of modality is often dictated by the task context
of the user. For example, a geologist (example from the paper) is likely to annotate a map initially on a laptop.
The cellphone would most likely be used in a car for directions. Then in the field, the most convenient device
would be a PDA and the most likely task — adding annotations about current location. It’s great but sounds a
bit far fetched to me.

One way to adapt the presentation model on the fly, is to use decision trees to incorporate various aspects
of the context in which an application is running to choose the right widget instances. An example of such a
decision tree is shown in Figure 1 — this seems to explain the mechanism behind the currend Pebbles rendering
algorithm [3]. The authors recognize that this is not sufficient. They suggest that the ultimate solution would do
something similar to what we do with putting parts of the UI into tabs. Consequently they recognize that the
model should group parts of the UT into units that should be presented together — precisely what we are doing.
It looks like they have never implemented such a system but in the future works section they say they plan to
try a constraint-based approach and an optimization-based search.

5 Implications For Supple

I think T lack clarity as to what classes of problems SUPPLE should solve. My initial feeling was that SUPPLE
should only deal with rendering the UI and all processing, including dialogue management, should be done by the
application. To the extent, that if windows needed to be popped up dynamically, the application would supply
corresponding abstract description and SUPPLE would render it on the fly.

5.1 Iformation Requirements of Supple — Current Thoughts

So far we have only considered the kinds of information that SUPPLE would need in order to render the interface
and perform intelligent transformations of the underlying representation. Thus we consider the following classes
of information:

¢ Typed hierarchical description of information flowing between the interface and the applica-
tion. This is our basic model. It seems to correspond partially to the application model and partially to the
abstract presentation model. Unlike other representations, however, it contains no descriptions of concrete
widgets.

e Device model —in our case the device model includes the concrete widgets as well as the information about
the screen real estate, interaction capabilities, and all other aspects relevant to rendering the interface. In
our aproach, the device model is built into the rendering engine for a given platform and does not need to
be specified explicitly (certainly not in a domain-independent manner). It is possible to render a UI for a
PDA on a desktop machine, but the rendering has to be done by a dedicated renderer.

e Translation Functions — these should allow us to tranform the basic model. Currently we assume that
all such tranformations would yield a simplified, less desirable (but potentially more compact) version of
the interface.

e User traces — they are supposed to help us in creating the user model (either individual or aggregate).
The user model can be used by the optimization algorithm to make choices optimized for a particular usage
pattern. The traces can also help remove (or hide) unused functionality.

¢ Preconditions indicate when parts of the UI become accessible. In MASTERMIND they are part of the
application model [7]. In Pebbles, they are used to decide when parts of the interface should be visible.
We have argued that an opposite approach is also possible: display all parts of the interface and satisfy
preconditions automatically. I have also realized, that it may sometimes make sense to express preconditions
in terms of variables that are not rendered by the UL Thus we need a fourth category of variables (in addition
to settable, readable and read/settable).

e Magic model — I will not assign a specific name to this until we decide what should be in it. This is the
magic causal model what we planned to use to infer how to simplify the interface automatically. We have
argued that it may need to contain constraints or planning operators indicating how the variables interact
with one another.

References

[1]

[2]

3]

[4]

[5]

[6]

[7]

(8]

Jacob Eisenstein, Jean Vanderdonckt, and Angel Puerta. Adapting to mobile contexts with user-interface
modeling. In Workshop on Mobile Computing Systems and Applications, Monterey, CA, 2000.

Jacob Eisenstein, Jean Vanderdonckt, and Angel Puerta. Applying model-based techniques to the development
of uis for mobile computers. In Proceedings of the 6th international conference on Intelligent user interfaces,
pages 69-76. ACM Press, 2001.

Jeffrey Nichols, Brad A. Myers, Michael Higgins, Joe Hughes, Thomas K. Harris, Roni Rosenfeld, and Mathilde
Pignol. Generating remote control interfaces for complex appliances. In CHI Letters: ACM Symposium on
User Interface Software and Technology, UIST’ 02, Paris, France, 2002.

Siegfried Schreiber. Specification and generation of user interfaces with the BOSS-system. In EWHCI, pages
107-120, 1994.

Kurt Stirewalt and Spencer Rugaber. Automating ui generation by model composition. In ASE, pages 177—,
1998.

Pedro Szekely, Ping Luo, and Robert Neches. Beyond Interface Builders: Model-Based Interface Tools. In
INTERCHI’93, pages 383-390, April 1993.

Pedro A. Szekely, Piyawadee Noi Sukaviriya, Pablo Castells, Jeyakumar Muthukumarasamy, and Ewald
Salcher. Declarative interface models for user interface construction tools: the MASTERMIND approach.
In EHCI, pages 120-150, 1995.

Jean Vanderdonckt and Pierre Berquin. Towards a very large model-based approach for user interface devel-
opment. In UIDIS, pages 76-85, 1999.

