
Automatically Generating User Interfaces For
Ubiquitous Applications

Krzysztof Gajos and Daniel S. Weld

University of Washington
Seattle, WA, USA

{kgajos,weld}@cs.washington.edu

Abstract. Supple is an application and device-independent system,
currently under development at University of Washington, that auto-
matically generates user interfaces for a wide variety of display devices.
Supple uses decision-theoretic optimization to render an interface from
an abstract functional specification and an interchangeable device model.
Supple also provides adaptation and customization mechanisms that
allow for system- and user-initiated modifications to the appearance, or-
ganization and navigational structure of the user interface.

1 Introduction

Ubiquitous computing promises seamless access to a wide range of computa-
tional tools and Internet-based services — regardless of the user’s physical loca-
tion. For example, when a person enters a room, she may want to control the
room’s equipment and applications from her PDA. Alternatively, the user may
be carrying a display-less device, such as the Personal Server [8], and want to
use any display available (such as her phone, a friend’s laptop or a public touch
panel) to interact with the data and applications stored on her Personal Server.

A critical aspect of this vision is the premise that every application (whether
it be an email client or room-lighting controller) should be able to render an in-
terface on any device at the user’s disposal. Given the wide range of device types,
form factors, and input methods, it is unscalable for the human programmers
to create interfaces for each type of device. Instead, an automated solution is
necessary. This is even more apparent when we consider the fact that sometimes
new functionality emerges from runtime combinations of available applications
and appliances [5].

Essential to our long-term vision [9] is also the observation that today’s soft-
ware is mass produced with a plethora of features designed to address the needs
of very diverse user populations. The interfaces shipped with popular applica-
tions are designed in a “one size fits all” manner, but by aiming to address the
needs of the “average user” they miss essential needs of almost every individual
user. In contrast, wouldn’t it be ideal if every user could have a custom-built
UI that best reflected his or her needs? In this paper, however, we will focus
primarily on the challenge of adapting the user interfaces to the wide variety of
display devices available in today’s ubiquitous computing environments.



2

A number of researchers have identified this challenge and several solutions
have been proposed, e.g. [3, 5, 6]. Although promising, the current solutions do
not handle device constraints in a general enough manner to accommodate the
wide range of display sizes and interaction styles available even in today’s ubi-
comp environments.

With the Supple system, we take a different approach — treating interface
generation as an optimization problem. When asked to render an interface (spec-
ified functionally) on a specific device and for a specific user, Supple searches for
the rendition that meets the device’s constraints and minimizes the estimated
cost (user effort) of the person’s activity. For example, Figure 2 in Section 4
depicts two different interfaces Supple deemed optimal (with respect to a cost
function derived from the device and user models) for two devices with the same
screen size but different interaction methods. It is important to note that unlike
some of the earlier work, e.g. [4, 1], we not only compute the optimal layout but
also choose the individual widgets to be used in rendering of the UI and the
overall navigation structure of the final interface (i.e., placement of parts of the
interface in tab panes, pop up windows, etc.).

2 User Interface Generation As Optimization

We cast the user interface generation as a decision-theoretic optimization prob-
lem, where the goal is to minimize the estimated user effort for manipulating a
candidate rendering of the interface. Supple takes three inputs: a functional in-
terface specification, a device model and a user model. The functional description
defines the types of data that need to be exchanged between the user and the ap-
plication. The device model describes the widgets available on the device, as well
as cost functions, which estimate the user effort required for manipulating sup-
ported widgets with the interaction methods supported by the device. Finally,
we model a user’s typical activities with a device- and rendering-independent
user trace.

The information provided by these models is combined by our constraint-
based branch-and-bound search algorithm. At each step of the search, the algo-
rithm attempts to assign a widget to an element in the interface specification.
Primitive elements (those corresponding to actual functionality in the applica-
tion) are paired with widgets that are capable of displaying (or manipulating)
information of the element’s type. Container elements (those that provide logical
groupings within the interface model) are paired with different layout panes (ver-
tical, horizontal, grids), tab panes, etc. There are usually a number of different
widgets that could be assigned to any element in the interface specification. The
objective is to find such a global assignment, that results in the “best” concrete
interface rendering that satisfies all device constraints (such as the screen size).
The “goodness” of the resulting interface rendering is computed based on the
cost functions included in the device specification and the traces contained in
the user model.



3

The main algorithmic challenge stems from the fact that the number of possi-
ble combinations of widget assignments to interface elements grows exponentially
with the number of elements in the interface description. For example, there were
1.8×109 possible assignment combinations for the classroom controller when ren-
dered on a keyboard and pointer device (Figure 2) but our algorithm was able to
prune a vast majority of the search space and, consequently, the time necessary
to produce the interfaces ranges from a fraction of a second to 2 seconds on a
standard desktop computer. The computational requirements of our algorithm
make it impractical to run it on an impoverished platform such as a PDA or
a cellular phone. We discuss the practical implications of this fact in the next
section. Details of the models and rendering algorithms are available in [2].

3 Architecture

The three models that Supple combines to create a concrete user interface,
come from three independent sources:
– the user model is stored in user’s personal information space;
– the interface model is provided by the application or appliance developers;
– the device model, describing the capabilities of the display device, is provided

by the manufacturer of that device.

In ubiquitous computing, where users, applications and devices are all nomadic,
and where spontaneous interactions are a norm, we need to be prepared for
the “worst case” scenario, where each of the three models resides on a different
physical device and none of the devices is powerful enough to host the compu-
tation necessary to render the interface. To make it more concrete, consider a
simple scenario, where a user enters a public space, which is equipped with a
music system, and the user wishes to play some music and control it from his
PDA. His user model is stored on his Personal Server [8] – a small portable
computer without its own display; the device model comes from the PDA, and
the UI model is provided by the music system. None of these devices is capable
of performing the computation required to render the interface quickly enough,
so another, faster, computer has to be employed to run the Supple algorithm.

These considerations dictate how our system has to be modularized. Al-
though other considerations have prevented us from investing the necessary ef-
fort to fully distribute our system, we have enforced strict abstraction barriers so
as to allow for distribution at a later time. Figure 1 illustrates the components
of the Supple system and the flow of information between them. Solid arrows
show information flow during the rendering process while the dashed lines show
the data transfered while the user interacts with the rendered interface. First,
the three models need to be sent to Supple (arrows 1-3) and the rendered inter-
face description is sent to the target device (arrow 4). While the user interacts
with the interface, his actions are sent to the application or appliance, while
the changes in the state of the latter are communicated back to the interface
(arrow 5). Finally, all the interactions are sent to the user’s personal device for
recording in the user model (arrow 6).



4

Interface 
Model

Application
or

Appliance

User
 Model

User's
Info

Space

Trusted
Computer

SUPPLE

Device
 Model

Display
Device

1 2

5
6

3

4

Fig. 1. Supple architecture. 1-3. Models (for the Interface, User and Device) are sent
to Supple; 4. Generated interface is set to the Display Device; 5. The Display Device
communicates user’s actions to the Application or Appliance, while the latter sends its
state updates back to the device to be reflected in the UI; 6. The Display Device sends
the log of user’s actions to the user’s personal device for inclusion in the User Model.
In some situations, it may be more convenient to route communications along arrows
5 and 6 through Supple rather than establish additional direct connections.

4 Implementation Status

In [2] we demonstrated a working version of Supple, that generates UIs for three
different platforms: keyboard and pointer devices, touch panels and WAP cell
phones. More recently, we generalized our architecture to render interfaces with
cyclic functional specifications; this allows Supple to render personalized inter-
faces with shortcuts to frequently accessed functionality. We have also created
support for user-initiated customizations (e.g, deleting, moving or duplicating
arbitrary functionality throughout the rendered interface). Finally, we demon-
strated Supple’s scalability by implementing two larger applications: an email
client and a distributed jukebox, which allows a group of individuals to collab-
oratively manage a shared playlist on a common stereo.

Figures 2 and 3 show an interface for a classroom controller rendered on
three different types of devices: a keyboard and pointer device, a touch panel
and a WAP cell phone. Figure 4 shows an interface to a three-component stereo
system rendered on two keyboard and pointer devices of different sizes. As was
mentioned above, more complex applications have been rendered using Supple
but space constraints preclude inclusion of their interfaces in this paper.

5 Related Work

Our work builds on earlier research on model-based user interface generation [7],
but differs in several important aspects. Most importantly, in contrast to the
rule-based approaches used previously, including systems such as the Personal



5

(a) (b)

Fig. 2. The classroom interface rendered for two devices with the same size: (a) a
pointer-based device (b) a touch-panel device

Fig. 3. The classroom interface rendered on a WAP cell phone simulator (Sony Erics-
son T68i); the successive screen shots illustrate the steps necessary to manipulate the
brightness level of one of the lights.

(a) (b)

Fig. 4. An interface to a stereo system rendered on two keyboard and pointer devices
of different sizes.



6

Universal Controller (PUC) [3], we use optimization to select widgets, design
the navigation structure (decide if any parts of the interface should be placed
in tab panes or popup windows) and lay out the elements. Other modern user
interface generation system differ from ours in that, for example, iCrafter [5]
relies on hand-crafted templates and XIML [6] relies on the interface designer to
explicitly specify what widgets to use under what size constraints.

6 Conclusions

The success of our system ultimately depends on its adoption. On the one hand,
the interfaces we generate need to adequately address users’ needs. On the other
hand, we are aware that designers will be initially very uncomfortable using our
functional specification and relinquishing control over the final appearance of
the interfaces. To address the concerns of the users, we are currently working
on powerful adaptation and customization support that will provide users with
highly individualized interfaces. The designers’ concerns may lead to a hybrid
approach, where manually created renderings will be provided for a small num-
ber of most popular platforms, while automatically generated interfaces will be
provided in other situations.

Acknowledgments This work supported by NSF grant IIS-0307906 and
ONR grant N00014-02-1-0932. Raphael Hoffman is working on the customization
capabilities of Supple. Thanks to Gaetano Borriello and James Landay.

References

1. J. Fogarty and S. E. Hudson. GADGET: A toolkit for optimization-based ap-
proaches to interface and display generation. In UIST’03, Vancouver, Canada, 2003.

2. Krzysztof Gajos and Daniel S. Weld. Supple: automatically generating user inter-
faces. In IUI’04, Funchal, Portugal, 2004.

3. Jeffrey Nichols, Brad A. Myers, Michael Higgins, Joe Hughes, Thomas K. Harris,
Roni Rosenfeld, and Mathilde Pignol. Generating remote control interfaces for
complex appliances. In UIST’02, Paris, France, 2002.

4. Dan R. Olsen, Sean Jefferies, Travis Nielsen, William Moyes, and Paul Fredrick-
son. Cross-modal interaction using XWeb. In UIST’00, pages 191–200, San Diego,
California, United States, 2000.

5. S. Ponnekanti, B. Lee, A. Fox, P. Hanrahan, and T. Winograd. ICrafter: A service
framework for ubiquitous computing environments. In Ubicomp 2001, 2001.

6. Angel Puerta and Jacom Eisenstein. XIML: A universal language for user interfaces,
2002. unpublished paper available at http://www.ximl.org/.

7. Pedro Szekely. Retrospective and challenges for model-based interface development.
In F. Bodart and J. Vanderdonckt, editors, Design, Specification and Verification
of Interactive Systems ’96, pages 1–27, Wien, 1996. Springer-Verlag.

8. Roy Want, Trevor Pering, Gunner Danneels, Muthu Kumar, Murali Sundar, and
John Light. The personal server: Changing the way we think about ubiquitous
computing. In Ubicomp 2002, Goteborg, Sweden, 2002.

9. Daniel S. Weld, Corin Anderson, Pedro Domingos, Oren Etzioni, Krzysztof Gajos,
Tessa Lau, and Steve Wolfman. Automatically personalizing user interfaces. In
IJCAI03, Acapulco, Mexico, August 2003.


