
Learning Programs from Traces
using Version Space Algebra

Tessa Lau
IBM TJ Watson Research

P.O. Box 704
Yorktown Heights, NY 10598

USA

tessalau@us.ibm.com

Pedro Domingos
Department of CS&E

Box 352350
University of Washington
Seattle, WA, 98195 USA

pedrod@cs.washington.edu

Daniel S. Weld
Department of CS&E

Box 352350
University of Washington
Seattle, WA, 98195 USA

weld@cs.washington.edu

ABSTRACT
While existing learning techniques can be viewed as in-
ducing programs from examples, most research has fo-
cused on rather narrow classes of programs, e.g., de-
cision trees or logic rules. In contrast, most of today’s
programs are written in languages such as C++ or Java.
Thus, many tasks we wish to automate (e.g. program-
ming by demonstration and software reverse engineer-
ing) might be best formulated as induction of code in
a procedural language. In this paper we apply version
space algebra [10] to learn such procedural programs
given execution traces. We consider two variants of the
problem (whether or not program-step information is
included in the traces) and evaluate our implementa-
tion on a corpus of programs drawn from introductory
computer science textbooks. We show that our system
can learn correct programs from few traces.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning—Knowledge
acquisition, induction; I.2.2 [Artificial Intelligence]:
Automatic programming—Program synthesis

General Terms
Algorithms, Experimentation, Human Factors

1. INTRODUCTION
Important tasks, like programming by demonstration
or reverse-engineering of software artifacts, would be
facilitated if one could induce programs from execu-
tion traces. But although machine learning algorithms

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
K-CAP’03,October 23–25, 2003, Sanibel Island, Florida, USA.
Copyright 2003 ACM 1-58113-583-1/03/0010 ...$5.00

induce a type of program from examples, only certain
forms of target programs have been studied extensively.
For example, decision-tree learners produce a single dis-
crete-valued output via a sequence of input-value tests.
Other learners, whether computing a single output value
(e.g., classifiers) or a sequence of decisions (e.g., rein-
forcement learners), use similarly restricted represen-
tations. Attempts to learn programs of a more gen-
eral form have focused mainly on functional and declar-
ative languages (e.g., LISP, PROLOG), and preserve
tractability by explicitly or implicitly embodying very
strong biases. In reality, procedural languages like C++
or Java are much more prevalent, suggesting that much
knowledge is expressed in such languages, and that it is
important to easily incorporate a wide variety of biases
when learning them.

Our goal here is to extend the applicability of machine
learning by providing a framework and specific algo-
rithms for inducing programs in procedural languages,
avoiding as much as possible arbitrary a priori restric-
tions on the type of programs that can be learned. In or-
der to make learning with such weak biases feasible with
a realistic number of examples, we assume that, in ad-
dition to the program’s inputs and outputs, the learner
has access to a trace of the program’s execution—the
sequence of intermediate states produced by the pro-
gram when applied to a given input. This is a realistic
assumption in applications such as reverse engineering,
where the state of the system may be observable though
the source code is not, and programming by demonstra-
tion [11], where the intermediate states are results of a
human’s successive actions on a user interface, and the
program being executed exists only in the user’s mind.

This paper presents a language-neutral framework and
implementation for learning programs in an impera-
tive programming language (a subset of Python), given
traces of a program’s execution on specific inputs. We
view a procedure as a set of program constructs (e.g.,
conditionals and loops) that join together sequences of

primitive program statements. Our approach is based
on Lau et al’s version space algebra [10], which in turn
extends Mitchell’s version space framework [13]. Ver-
sion space algebra allows an efficient exhaustive search
of the space of programs consistent with the training
traces.1 It also enables explicit tailoring of the learning
bias to include only the specific programming language
statements defined by a grammar. As a result, our sys-
tem learns correct programs from a remarkably short
5.1 traces on average.

This paper is organized as follows. Section 2 reviews
prior work on version space algebra. Section 3 defines
the problem of learning programs from traces. Section
4 presents and evaluates our approach for learning when
program-step information is available, and Section 5 ex-
plains how learning is possible when execution traces
are absent this information. Finally, we discuss related
work and conclude.

2. VERSION SPACE ALGEBRA
In this section we review version space algebra [10]. A
hypothesis is a function h that takes as input an element
of its domain Ih and produces as output an element of
its range Oh. A hypothesis space is a set of functions
with the same domain and range. The bias determines
which subset of the universe of possible functions is part
of the hypothesis space; a stronger bias corresponds to
a smaller hypothesis space. We say that a hypothesis
h is consistent with a training example (i, o), for i ∈ Ih

and o ∈ Oh, if and only if h(i) = o. A version space,
VSH,D, consists of only those hypotheses in hypothe-
sis space H that are consistent with the sequence D of
examples. When a new example is observed, the ver-
sion space must be updated to ensure that it remains
consistent with the new example. A version space may
be executed on an input i to produce a set of outputs
{o1, o2, ..., oN} such that each oj = hj(i) for some hj in
the version space. In our framework, a preference bias
may be set by the application designer by defining a
probability distribution over the hypotheses in the hy-
pothesis space, from which we can compute the proba-
bility of each hypothesis in the version space. In many
cases, version spaces may be represented efficiently by
constraints on the set of consistent hypotheses, such as
the boundaries of the set relative to a partial order (one
that is convex and definite [8], but not necessarily the
generality ordering [10]).

For example, we define a ConstInt version space con-
taining functions of the form f(x) = C for every integer-
valued C. Given a training example (input: 0, output:
5), the version space is updated to contain only the func-
tion f(x) = 5. Further training examples will either
be consistent with the version space’s single hypothe-
1Although our approach is currently incompatible with
noisy data, we plan to lift this limitation in future work,
as Norton and Hirsh [16] have for concept learning.

sis, or cause the version space to collapse to contain no
hypotheses. This simple version space becomes more
powerful when used as a building block in the version
space algebra.

Version space algebra is a method for composing to-
gether version spaces to build a complex version space
out of simpler parts. Version space algebra operators
include

• Union: combine two or more version spaces to
form one space containing the union of the func-
tions in the member spaces,

• Join: combine two or more version spaces to form
one space containing the cross product of the func-
tions in the member spaces, subject to a consis-
tency predicate, and

• Transform: convert one version space into an-
other by mapping its functions to a different do-
main and range.

The transform operator is key to the modularity of the
version space algebra. A simple version space such as
ConstInt may be transformed into a number of differ-
ent domain-specific version spaces by the suitable defi-
nition of a pair of transformation operators that convert
the inputs and outputs for one version space into inputs
and outputs for the other. For example, we represent
a version space containing constant assignment state-
ments (e.g., y = 4) as a transform of a ConstInt space,
mapping each function f(x) = C into an assignment
statement y = C.

3. PROBLEM STATEMENT
We define the problem of learning programs from traces
as follows. Let a state be the environment visible to
our system during the execution of a program. We
formalize a program as a procedure that, given an ini-
tial state S0, produces a trace—a sequence of states
S0, S1, ..., Sn resulting from the execution of the proce-
dure on S0, such that the execution of a single program
statement in state Si produces state Si+1.2 The pro-
gram’s inputs and outputs are encoded in the trace.
We say that a program is consistent with an example
trace T = 〈S0, S1, S2, ..., Sn〉 iff the program, when ex-
ecuted from state S0 and given the inputs included in
T , produces trace T .

Let the bias be the language denoting the set of al-
lowable programs. We state the learning problem as
follows:

Given a language and one or more traces of
a target program, output a program in the

2Nonterminating programs are an area for future work.

language that is consistent with all of the ex-
amples and generalizes correctly to future ex-
amples.

The contents of the program state affect the difficulty of
the learning problem. We identify four configurations:

Incomplete The state contains a subset of the vari-
ables available to the program; some relevant vari-
ables are hidden.

State variables The state includes the complete set of
variables available to the program.

Program step identifier The state includes the com-
plete set of variables available to the program, and
unique identification of the program step executed
between each pair of consecutive states.

Fully visible The state includes the complete set of
variables available to the program, unique identi-
fication of the program step, and a set of change
predicates indicating whether each variable changes
between each pair of consecutive states.

When the state is fully visible, the problem of learning
programs is simply a matter of inferring the condition-
als present in the program and the variabilized program
statements that cause the observed changes in the state.
The change predicates enable the learner to identify the
portion of the state that has changed in this program
step; without them, certain program statements (such
as assigning to a variable the value it previously held)
are more difficult to learn. If the program step identifier
is not available, the program structure (i.e., loops and
conditionals) must be inferred from the trace as well.
Finally, if part of the state is hidden, the learner must
consider a much larger space of hypotheses since the cor-
rect program may reference variables not visible in the
state. The next section shows how to learn programs
with loops and conditionals, given knowledge of the pro-
gram step identifier. In section 5, we relax the program-
step-identifier assumption and demonstrate learning a
certain class of programs with only state variable in-
formation: loops with a fixed but unknown number of
statements in the loop body. Learning with an incom-
plete state remains an item for future work.

4. LEARNING PROGRAMS FROM TRACES
A simple example illustrates the problem of learning
programs from traces given knowledge of the program
step identifier. Figure 1(a) shows an execution trace for
a program that computes the greatest common divisor
of two values. Figure 1(b) shows one program that is
capable of producing this trace. Our SMARTpython
system learns such a program given fourteen traces like
the one shown in Figure 1(a).

Prog Var values Label
step i j k
1 18 12 0 S0

2 18 12 0 S1

3 18 12 6 S2

4 12 12 6 S3

1 12 6 6 S4

2 12 6 6 S5

3 12 6 0 S6

4 6 6 0 S7

1 6 0 0 S8

5 6 0 0 S9

1: while j > 0:
2: k = i mod j
3: i = j
4: j = k

(a) (b)

Figure 1: (a) Sample execution trace for a pro-
gram that computes the greatest common divi-
sor of two values. (b) A program consistent with
the trace.

Table 1: Grammar describing the class of
programs learnable by our system. Italicized
non-terminals are defined by domain-dependent
grammars.

〈Program〉 ::= 〈Statement〉 [; 〈Program〉]
〈Statement〉 ::= 〈PrimitiveStatement〉
〈Statement〉 ::= IF 〈Condition〉 THEN 〈Program〉

ELSE 〈Program〉
〈Statement〉 ::= WHILE 〈Condition〉 DO 〈Program〉

4.1 Learning program structure
The grammar shown in Table 1 defines the language
recognized by the learner, including control flow con-
structs such as loops and conditionals. The grammar
is parameterized by two language-specific components:
primitive program statements and Boolean conditional
expressions. The grammar with instantiated compo-
nents defines the set of programs in the hypothesis space
of the program learner.

Control flow statements may be either a conditional IF
statement that tests a condition and branches to one or
another subprogram, or a WHILE loop that executes
a subprogram as long as a condition holds. Assum-
ing the program step identifier is available, the problem
of learning programs reduces to learning each program
statement individually based on the state before and
after that statement’s execution. For example, in Fig-
ure 1, states S1/S2 and S5/S6 are examples of states
before and after program step 2 is executed.

Figure 2 shows the version space used to learn programs
expressed in the grammar in Table 1. A program is a
join of version spaces representing invididual program
statements. The number of version spaces in the join
is lazily determined after the first training example has
been observed, allowing our system to learn programs

Program

Statement

IF WHILE

Next Step

Primitive

Primitive statement
version space

TrueStep
True StepCondition

version space

Condition
version space

Statement Statement...

FalseStep
False Step

Figure 2: Version space hierarchy that defines
the program structures corresponding to the
grammar shown in Table 1. ∪ indicates a union
and ./ indicates a join.

of any length. The Primitive space joins the space of
primitive statements provided by the application de-
signer with a NextStep space that contains the index of
the next program step. The IF and WHILE spaces join
a condition space (provided by the application designer)
with two spaces indicating the next program step when
the condition is true or false (the next program step
version spaces are transformed ConstInt spaces).

This version space is parameterized by the language-
specific version spaces required to recognize statements
and conditionals for a particular programming language.
The next section describes our SMARTpython imple-
mentation for a simple imperative language.

4.2 Learning statements and conditionals
A program statement is a function that maps from one
program state to another. A program statement is con-
sistent with a pair of states 〈Si, Sj〉 iff when executed in
state Si the statement produces state Sj . For example,
an assignment statement executed in one state produces
another state in which a new value has been assigned to
the variable. A conditional statement produces a state
in which the variable values are unchanged, but the pro-
gram step has been updated, indicating which branch
to follow.

For example, consider states S1 and S2 in Figure 1(a).
In state S1, variable k has value 0, while in state S2, k
has value 6. Assignment statements that are consistent
with this state change include the correct statement k =
i mod j, as well as the statements k = 6, k = i − j,
k = j − 6, and so on.

Table 2 shows the grammar that defines the program
statements recognized by the SMARTpython system.
Figure 3 shows the corresponding version space. The
version space hierarchy can be constructed in a straight-
forward manner from the grammar; future work will in-
vestigate automatic derivation of a version space from

Table 2: Grammar describing the conditions and
primitive statements supported in the SMART-
python system. The % symbol denotes the mod-
ulo operator. Combined with the grammar in
Table 1, this grammar defines the language of
programs expressible in SMARTpython.

〈Condition〉 ::= 〈Var〉 < 〈Var〉
〈Condition〉 ::= 〈ArrayVar〉 < 〈Var〉
〈Condition〉 ::= 〈Var〉 >= 〈Var〉
〈Condition〉 ::= 〈ArrayVar〉 >= 〈Var〉
〈Condition〉 ::= 〈Var〉 = 〈Var〉
〈Condition〉 ::= 〈ArrayVar〉 = 〈Var〉
〈Condition〉 ::= 〈Var〉 > Constant
〈Condition〉 ::= 〈Var〉 < Constant

〈PrimitiveStatement〉 ::= 〈Var〉 := 〈Value〉
〈PrimitiveStatement〉 ::= 〈Var〉 := 〈Var〉 〈Op〉 〈Var〉
〈PrimitiveStatement〉 ::= 〈ArrayVar〉 := 〈Value〉
〈PrimitiveStatement〉 ::= 〈ArrayVar〉 := 〈Var〉
〈Var〉 ::= i | j | k
〈ArrayVar〉 ::= A[〈Var〉] | A[0] | A[1] | ... | A[N]
〈Value〉 ::= Constant | 〈Var〉 | 〈ArrayVar〉
〈Op〉 ::= | + | - | * | / | mod

a grammar specification.

Each node in the tree represents a version space. A
stacked node represents multiple parameterized version
spaces. For instance, the VarValue node represents
three version spaces containing assignment statements
that assign to the variables i, j, and k. The ArrayValue
node similarly represents assignments to array variables
for constant indices 0 through N , and variable indices
i, j, and k.

The union combines multiple version spaces of the same
type together into a single collection of functions. For
example, VarValue(i) is a collection of assignment state-
ments to variable i, including constant assignment, con-
stant increment, constant multiplier, and functions of
other variables. The VarValue and ArrayValue spaces
have the property that the consistency of all hypothe-
ses in the space can be checked against most training
examples with a single test; this information is pro-
vided by the application designer. When the property
holds, large portions of the search space can be elim-
inated without examining each individual hypothesis.
For example, if it is known that variable i’s value has
changed, then no assignment to a different variable can
be consistent.

Edge labels in Figure 3 indicate transform functions.
For example, the i+=C transform function converts a
set of f(x) = C functions into functions of the form
f(i) = i + C. A transform (not shown) on the Assign-
ment version space converts from the value of the i+C
expression into a program state in which the variable
has been assigned its new value.

Figure 3: Version space for learning primitive
statements (top) and Boolean expressions (bot-
tom) in SMARTpython. Nontrivial transforms
are shown as edge labels. Rectangular leaf
nodes indicate enumerated version spaces, while
oval leaf nodes indicate boundary-represented
spaces.

Conditional statements cause control flow to branch to
one part of the program or another depending on the
truth value of a Boolean expression. By examining
which step the program branches to after the condi-
tional, we distinguish states in which the condition is
true from those in which it is false. Equivalently, these
states are positive and negative examples of the target
condition. In Figure 1, states S1 and S5 are positive ex-
amples of the condition j > 0 in program step 1, while
state S9 is a negative example. The version space that
represents conditionals of the form j > C is represented
using boundary sets. After the first positive example, in
which j has the value 12, VSj>C contains hypotheses of
the form j > C for C > 12. Since these hypotheses are
totally ordered, we represent this version space using
the boundaries 13 and ∞. Figure 3 shows the complete
set of Boolean expressions supported as conditionals in
SMARTpython.

4.3 Evaluation
We evaluate our approach on sixteen programs from the
following sources:

• An introductory Fluency in Information Technol-
ogy class designed for non-CS-majors; quiz and
exam programs were translated from Visual Basic
to the subset of Python supported by our system

• Introductory programming textbooks [4, 7, 3]

• Algorithms of our own implementation, e.g. bub-
ble sort

The average program length is six statements. For each
program, we randomly generate a set of 20 training ex-

amples and 100 test examples. Each example consists of
a random initial state contructed by assigning a random
integer between -100 and 100 to each named variable
and to each element of a length-5 array. For the train-
ing examples, we execute the target program on the ex-
ample’s initial state to generate a trace. We then train
the learner incrementally on the 20 training traces, test-
ing its accuracy after each new training example. If the
version space has not converged to a single program, we
choose a highest probability program to execute.3 The
accuracy is the fraction of the 100 examples for which
the learned program generates the correct trace. We
repeat this procedure 25 times and average the results.

Figure 4 shows the accuracy versus number of training
examples for the six most complex programs. On aver-
age, our system requires 5.1 examples to reach 100% ac-
curacy. The greatest-common-divisor program achieves
100% accuracy with 14 traces. Learning from so few
traces is possible because of the large amount of in-
formation in each trace; each iteration through a loop
generates another example of the statements in the loop
body. Visual inspection of learned programs showed
them to be semantically equivalent to the correct pro-
gram; where differences were observed, they were of the
form “if i ≥ 0 then B else A” instead of “if i < 0 then A
else B”. Conditionals proved to be the hardest to learn
because randomly-generated traces did not adequately
illustrate the decision boundary. If a human were to
provide traces, such as in a programming by demonstra-
tion context, traces could be selected so as to provide
maximal benefit to the learner, reducing the number of
traces required for learning. While preliminary, these
results indicate the feasibility of our approach and show
that nontrivial programs can be learned from a small
number of traces.

5. LEARNING WITHOUT A PROGRAM
STEP IDENTIFIER

The previous section showed how to learn programs
from traces given knowledge of the program step being
executed at each point in the trace. However, in pro-
gramming by demonstration (PBD) applications, where
the system generalizes a program from actions performed
directly on the user interface, it is not feasible to require
the user to specify a program step for each action.

The SMARTedit system [10], for example, automated
repetitive text-editing tasks by learning the actions a
user performed in a text editor. The system assumed
that the user was performing a task whose program
structure consisted of a single loop with a fixed-length
body. Instead of requiring explicit program step la-
belling, SMARTedit required users to manually segment
the program trace by pressing a button at the beginning
3We use uniform probability distributions in all leaf spaces
except the Var(i) op Const family, which are biased towards
more specific hypotheses.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2 4 6 8 10 12 14 16 18 20

A
cc

ur
ac

y

training examples

Accuracy averaged over 25 runs

array-sum
bubble-sort

fibonacci
find-min

GCD
primality-test

Figure 4: Accuracy versus number of training
examples for a representative selection of pro-
grams.

Action Action Action Action ActionAction

...Program−1 Program−2 Program−N

Unsegmented Program

...

Figure 5: Version space for learning loops of un-
known length

and end of every iteration of the task. For fixed-length
loops, this segmentation enabled SMARTedit to infer
the program step corresponding to each action in the
demonstration. However, we believe that even manual
segmentation imposes too much of a burden on the user.

We can extend our learning method to perform auto-
matic segmentation by generalizing the version space.
Specifically, we define an UnsegmentedProgram version
space (Figure 5) as a union of one-step, two-step, . . . N-
step programs. These programs are composed of se-
quences of text-editing actions, which are the primitive
program statements defined in the original SMARTedit
system, and include moving the cursor to a new po-
sition, and inserting/deleting text. Actions are func-
tions that map from one text-editing state to another;
text-editing states include the contents of the file being
edited, the location of the insertion cursor, and the con-
tents of the clipboard; see prior work [10] for a complete
description. The Action verion space in Figure 5 is the
primitive statement version space of Figure 2.

We assume that the program structure consists of a
single loop with a fixed number of statements in its
body. Since the user will not provide segmentation in-
formation, the learner must infer the correct iteration
boundaries from the trace. The version space is lazily
constructed on receipt of the first training example,

Table 3: Exerimental results showing number
of actions required to learn without program
step identifier. The Iter column shows the same
result measured in iterations; the Orig column
shows the number of iterations required by the
original SMARTedit system.

Scenario Total Train Iters Orig
columns 98 7 1 1
addressbook 84 27 1.93 2
grades 14 2 1 1
commentstyle 25 5 1 1
HTML-to-LATEX 56 7 0.875 3
bindings 77 39 5.57 6
game-score 98 34 2.43 3
country-codes 32 8 1 1
pickle-array 468 73 18.25 19
xml-attribute 192 8 1 1

which bounds the maximum length of a single itera-
tion.4 For instance, suppose the user performs three
text-editing actions: moving the cursor to a new posi-
tion, inserting text, and moving the cursor again. The
version space contains program hypotheses with one,
two, or three actions per iteration. The Program-1 ver-
sion space shown in the figure is trained with each of the
three actions in the trace as if they were all examples
of the same program step; this version space collapses
immediately because no hypothesized step is consistent
with both moving the cursor and inserting text. The
Program-2 version space represents a program in which
the two movement steps are each examples of the first
step in the program. The Program version spaces are
weighted probabilistically such that programs of length
i are twice as likely as programs of length i + 1.

We evaluated this approach on a number of text-editing
scenarios, listed in Table 3. The first five were used to
test the original SMARTedit system. The remainder
are: bindings, source code refactoring; game-score,
used to evaluate the TELS PBD system [14]; country-
codes, used to evaluate the WIEN wrapper induction
system [9]; pickle-array, converting a list of numbers
into a serialized form; and xml-attribute, converting
elements in an XML file to a different schema.

Each scenario is comprised of an initial state, and a
sequence of actions required to complete the task start-
ing from the initial state. We measure the system’s
performance by training the learner on a prefix of the
target sequence, and testing its performance on the re-
mainder. The results of this experiment are shown in
Table 3. The Train column shows the minimum num-

4We assume that the user performs at least one complete
iteration of the target program.

ber of actions (out of the Total number of actions in
the scenario) required to learn a program model that
performs correctly on the remainder of the scenario.

The results show that the system is able to accurately
identify the correct loop length, and infer the program
step identifier, without requiring the user to manually
segment each trace. For comparison, the table also
shows the number of iterations required by both our
system and the original SMARTedit system. Although
our system is given strictly less information, in half the
cases it outperforms the original system, requiring fewer
iterations to learn a correct program. This result is
due in part to the fact that the original experiment
measured only complete iterations, whereas our exper-
iment employs a finer-grained metric, measuring indi-
vidual actions within each iteration. If a step early in
each iteration requires more training examples than a
later step, then the system will learn the correct pro-
gram after being trained on only the first portion of an
iteration, effectively reducing the number of iterations
required to learn the program.

However, other factors allow our system to perform sig-
nificantly better than the original. For example, the
HTML-to-LATEX scenario (e.g., turning <HTML> into
$<$HTML$>$) shows a remarkable improvement: what
used to require 3 iterations is learnable by our system
with 0.875 iterations. The original SMARTedit was
trained with 8 text-editing actions per iteration, four
each to locate and escape the left and right angle brack-
ets. Multiple iterations were needed in order to disam-
biguate the action that located the next angle bracket.
By contrast our system, which makes no assumptions
about the length of the iteration, found that a four-step
program was able to accomplish the task, by general-
izing a procedure to escape any angle bracket. With a
4-step iteration, seven training actions gave the system
the two examples it required to correctly disambiguate
the procedure, resulting in a large improvement over
the original system.

6. RELATED WORK
Our work is closely related to automatic programming
[18, 2, 6, 1, 12, 17]. Unlike language-specific systems,
version space algebra provides a general method for
learning programs in a wide variety of languages; its
bias is defined by an input grammar. Our approach
also takes advantage of version space decomposition and
boundary set representability to efficiently conduct an
exhaustive search of the space of programs.

The role of version space algebra in learning procedural
programs is similar to the use of declarative biases in
inductive logic programming [15]. In contrast to the
heuristic search typically used in ILP systems, version
space algebra allows efficient exhaustive search; future
work will investigate its application to learning logic

programs.

Compared to previous work using version space algebra
for programming by demonstration [10], our work im-
proves expressiveness by learning programs with loops,
conditionals, and state variables, and shows that pro-
grams can be learned without knowledge of the program
step identifier. In addition, we have formalized condi-
tions as boundary-set representable version spaces and
added a probabilistic framework. Our work on condi-
tions is very similar to work on detecting invariants [5],
which could be used as a module in our learner.

7. CONCLUSION
In this paper, we:

• Formalize the problem of learning programs from
traces using version space algebra;

• Propose a domain-independent method for learn-
ing complete programs from traces, given a speci-
fication of statements and conditions in the target
language;

• Apply this method to learning programs from tra-
ces in a high-level language with arrays, condition-
als, and loops;

• Use it to learn text-editing programs by demon-
stration without explicit program step identifiers;
and

• Experimentally validate our approach, showing it
learns correct programs from a small number of
examples.

Relaxing the assumptions we have made in this work
is our primary goal for future work. Handling noisy or
incomplete data is an important first step. One idea
is to integrate heuristic search with the version space
algebra. Although this paper has presented the version
space algebra as combining independent version spaces,
we expect that different learners, such as decision trees
or neural networks, can be substituted for individual
version spaces in the version space hierachy where ap-
propriate.

Particularly important for the programming by demon-
stration application is learning from fewer traces. We
plan to apply active learning to learn more accurately
from fewer traces. We also plan to extend our model
to handle more expressive control flow constructs (e.g.
subroutines and recursion) and program statements (e.g.
conjunctive conditions). Finally, we will conduct a for-
mal analysis of our approach and investigate tradeoffs
between expressiveness and learnability as we scale to
larger and more complex programs.

8. REFERENCES
[1] D. R. Barstow. An experiment in

knowledge-based automatic programming.
Artificial Intelligence, 12:73–119, 1979.

[2] A. W. Biermann. On the Inference of Turing
Machines from Sample Computations. Artificial
Intelligence, 3:181–198, 1972.

[3] T. Cormen, C. Leiserson, and R. Rivest.
Introduction to Algorithms. MIT Press, 1991.

[4] Edsger W. Dijkstra. The Discipline of
Programming. Prentice Hall, Inc., Englewood
Cliffs, NJ, 1976.

[5] M. Ernst, A. Czeisler, W. Griswold, and
D. Notkin. Quickly detecting relevant program
invariants. In Proceedings of the 22nd
International Conference on Software Engineering
(ICSE 2000), pages 449–458, Limerick, Ireland,
June 2000.

[6] C. Green and D. Barstow. On program synthesis
knowledge. Artificial Intelligence, 10:241–279,
1978.

[7] David Gries. The Science of Programming.
Springer-Verlag, New York, NY, 1981.

[8] Haym Hirsh. Theoretical underpinnings of version
spaces. In Proceedings of the Twelfth International
Joint Conference on Artificial Intelligence, pages
665–670. San Francisco, CA: Morgan Kaufmann,
July 1991.

[9] N. Kushmerick, D. Weld, and R. Doorenbos.
Wrapper Induction for Information Extraction. In
Proceedings of the Fifteenth International Joint
Conference on Artificial Intelligence, pages
729–737. San Francisco, CA: Morgan Kaufmann,
1997.

[10] Tessa Lau, Pedro Domingos, and Daniel S. Weld.
Version space algebra and its application to
programming by demonstration. In Proceedings of
the Seventeenth International Conference on
Machine Learning, pages 527–534, June 2000.

[11] Henry Lieberman, editor. Your Wish is My
Command: Giving Users the Power to Instruct
their Software. Morgan Kaufmann, 2001.

[12] Z. Manna and R. Waldinger. Knowledge and
reasoning in program synthesis. Artificial
Intelligence, 6, 1975.

[13] T. Mitchell. Generalization as search. Artificial
Intelligence, 18:203–226, 1982.

[14] Dan Hua Mo. Learning Text Editing Procedures
from Examples. Master’s thesis, University of
Calgary, December 1989.

[15] C. Nédellec, C. Rouveirol, H. Adé, F. Bergadano,
and B. Tausend. Declarative bias in ILP. In
L. de Raedt, editor, Advances in Inductive Logic
Programming, pages 82–103. IOS Press,
Amsterdam, the Netherlands, 1996.

[16] S. W. Norton and H. Hirsh. Classifier learning
from noisy data as probabilistic evidence
combination. In Proceedings of the Tenth National
Conference on Artificial Intelligence, pages
141–146, Menlo Park, CA, 1992. AAAI Press.

[17] C. Rich and R. Waters. The programmer’s
apprentice: A research overview. IEEE Computer,
21(11):10–25, 1988.

[18] David E. Shaw, William R. Swartout, and
C. Cordell Green. Inferring lisp programs from
examples. In Proceedings of the Fourth
International Joint Conference on Artificial
Intelligence, pages 260–267, Tblisi, Georgia,
USSR, 1975. San Francisco, CA: Morgan
Kaufmann.

