Programming by Demonstration:

An Inductive Learning Formulation

*

Tessa A. Lau and Daniel S. Weld
Department of Computer Science and Engineering
University of Washington
Seattle, WA 98195-2350
October 7, 1998
{tlau, weld}@cs.washington.edu

ABSTRACT

Although Programming by Demonstration (PBD) has
the potential to improve the productivity of unsophis-
ticated users, previous PBD systems have used brittle,
heuristic, domain-specific approaches to execution-trace
generalization. In this paper we define two application-
independent methods for performing generalization that
are based on well-understood machine learning technol-
ogy. TGENyg uses version-space generalization, and
TGENFpo11, is based on the FOIL inductive logic pro-
gramming algorithm. We analyze each method both
theoretically and empirically, arguing that TGENyg has
lower sample complexity, but TGENpor, can learn a
much more interesting class of programs.

Keywords

Programming by Demonstration, machine learning, in-
ductive logic programming, version spaces

INTRODUCTION

Computer users are largely unable to customize mass-
produced applications to fit their individual tasks. This
problem of end-user customization has been addressed
in several ways.

e Adjustable preferences and defaults are simple to use,
but limited to those options considered important by
the application designer.

“Our research was greatly improved by discussions with
and comments from Greg Badros, Alan Borning, Adam
Carlson, William Cohen, Pedro Domingos, Michael Ernst,
Oren Etzioni, Neal Lesh, Alon Levy, and Mike Perkowitz.
This research was funded by Office of Naval Research Grant
N00014-98-1-0147, by National Science Foundation Grant
IRI-9303461, and by ARPA / Rome Labs grant F30602-95-
1-0024.

e Applications that support macros allow users to
record a fixed sequence of actions and later replay this
sequence using a shortcut such as a mouse click or a
keypress. Macros require little sophistication to cre-
ate — the user simply records a normal interaction
with the application; however, macros have limited
utility if the repetitive task has minor variations.

e Scripting languages allow sophisticated users to write
programs to control the application. While this type
of customization allows a user the most control, it
also requires programming experience and knowledge
of the potentially complex scripting language and ap-
plication interface.

Programming by Demonstration (PBD) [4] aims to
combine the simple interface of macros with the expres-
siveness of a scripting language. Like a macro recorder,
PBD allows users to construct a program by simply per-
forming actions in the user interface with which they are
already familiar. Unlike macros, however, the learned
programs can contain control structures such as itera-
tion, conditionals, and abstraction.

A complete PBD system consists of two major parts.
The trace generalizer constructs a programmatic repre-
sentation of the user’s actions by generalizing from an
execution trace to a program capable of producing that
trace. The interaction manager explains the resulting
program to the user and gains authorization before ex-
ecuting the program on the user’s behalf.

Example 1: Suppose a user performed the following
sequence of actions using an email application:

Goto Message #0, whose sender is Corey
Goto Message #1, whose sender is Oren
Goto Message #2, whose sender is Dan
Forward the current message to Tessa
Goto Message #3, whose sender is Corey
Goto Message #4, whose sender is Dan
Forward the current message to Tessa
Goto Message #5, whose sender is Corey
Goto Message #6, whose sender is Corey

Given this execution trace, a PBD trace generalizer
might conjecture that the user is “forwarding to Tessa
all email messages sent from Dan,” and output the fol-
lowing procedure:

For each message m in Mailbox:
Goto(m)
If Sender(m) is Dan:
Then Forward(m, Tessa)

The PBD system’s interaction manager would describe
the procedure to the user, accept any user-specified re-
finements to the program, offer to execute the code,
highlight the resulting effects, and implement an undo
facility.

This paper focuses on the problem of PBD trace gen-
eralization. Previous PBD systems have used brittle,
heuristic approaches. In contrast, we define two ro-
bust, application-independent methods for performing
generalization based on well-understood machine learn-
ing technology:

e Version-space generalization (TGENyg)
¢ Inductive logic programming (T GENfo1L,)

We theoretically and empirically analyze these two im-
plemented systems, offering a rational reconstruction of
aspects of the Eager [3] PBD system. TGENyg can
learn with fewer examples, but TGENgg, can learn a
much more interesting class of programs, such as pro-
grams with variable-length loop iterations. For exam-
ple, TGENpo1r, quickly learns a program equivalent to
the one shown above from the training examples shown.

PRIOR WORK

A complete PBD system is composed of trace general-
izer and interaction manager components. Generalizing
from an execution trace to a program involves (among
other things) determining the length of an iterative loop,
noticing regular changes in each iteration of such a loop,
and recognizing conditional constructs. The interaction
manager, on the other hand, explains the generaliza-
tion to the user and obtains authorization for program
execution. Although prior PBD systems have made sig-
nificant contributions to both of these components, our
work is restricted to trace generalization so we focus on
that aspect in this discussion.

Cypher [4] describes many PBD systems. The Ea-
ger [3] system detects and automates repetitive ac-
tions in Hypercard applications. Each user action is
compared against the action history using a pattern-
matching scheme. Once the system detects a repeti-
tive sequence, it highlights its prediction of the next
action, and offers to automate the remainder of the se-
quence. Peridot [15] allows programmers to construct
user interfaces by drawing them interactively. It uses a
set of condition-action rules to determine when to infer
constraints over widget placement and iterations over

sequences. Cima [12] learns text editing commands by
example; it relies on user hints, rather than multiple ex-
amples, to disambiguate possible programs. Chimera [6)
generalizes constraints between graphical objects from
multiple snapshots and provides a macro-by-example fa-
cility for creating macros in a graphical editing domain.
Tinker [10] supports programming Lisp by demonstra-
tion, but performs no inference, instead relying on the
user to disambiguate the examples.

These PBD systems all rely on heuristic rules to
describe when a generalization is appropriate. These
heuristics make PBD systems (like the rule-based ex-
pert systems on which they are modelled) brittle, labo-
rious to construct, and difficult to extend. For instance,
Eager is hardcoded to recognize a fixed set of sequences
over which a user may iterate, such as the email mes-
sages in a mailbox or the days of the week. Peridot uses
a set of domain-dependent condition-action rules to in-
fer constraints and loops. Unfortunately, these fragile
heuristics must be hand-crafted for each domain. In
contrast, we advocate using established machine learn-
ing techniques to perform robust trace generalization.
As we demonstrate in the remainder of this paper, our
approach also yields low sample complexity — TGENyg
and TGENpo1L, are capable of generalizing from a small
number of training examples.

Others have considered applying domain-independent
algorithms to PBD. Witten et al [27] identify shortcom-
ings in current machine learning approaches when ap-
plied to PBD, such as an inability to take advantage
of domain knowledge or user hints. Paynter sketches
out a general-purpose PBD framework using machine
learning [18]. Nevill-Manning and Witten [16, 17] de-
scribe a linear-time algorithm for detecting hierarchical
structure in sequences by generalizing a grammar from
repeated subsequences in a single example. Their al-
gorithm is elegantly simple, but it is not obvious how
to apply background knowledge to bias the generated
grammars.

Plan recognition [21, 5] typically requires a large li-
brary of possible plans which are checked against user
actions. This work may be viewed as inductive learning
with a very strong bias (the plan library). Bauer [1]
presents algorithms for constructing plan libraries from
a corpus of logged user traces and optional action mod-
els. Weida and Litman [25] use terminological sub-
sumption with temporal constraint networks to match
execution sequences with library plans. Lesh and Et-
zioni [8, 9] adapt the version space algorithm to perform
goal recognition with an implicit plan-library represen-
tation which is constructed by reasoning about action
preconditions and effects.

Our work is similar to previous machine learning ef-
forts at developing self-customizing software. Schlim-
mer and Hermens [24] describe a note-taking system
that predicts what the user is going to write and fa-

cilitates completion; the system works by learning a
finite state machine (FSM) modeling note syntax and
decision tree classifiers for each FSM state. Maes and
Kozierok [11] use nearest-neighbor learning (adjusted
by user feedback) to predict the user’s next action from
the action most recently executed, but in contrast to
our work there is no attempt to learn loops.

PBD AS AN INDUCTIVE LEARNING PROBLEM

By watching a user’s actions, a PBD system must induce
the abstract procedure that the human is executing. In
this section we consider two different ways of encoding
PBD trace generalization as an inductive learning prob-
lem.

e In the version-space encoding, each example is an it-
eration of a loop (i.e., an ordered sequence of actions),
and the system generalizes from multiple iterations.

e In the inductive logic programming encoding, exam-
ples are relational descriptions of individual user ac-
tions, and the system learns a Datalog program — an
ordered set of first-order rules that predict the next
action to be executed.

In the remainder of this section, we elaborate on these
encodings and discuss their relative advantages.

Version Space Encoding

Version space algorithms [13] use a general-to-specific
ordering among possible hypotheses to maintain a com-
pact representation (the set of maximally specific and
the set of maximally general hypotheses) of the version
space — the set of expressible hypotheses which are con-
sistent with the training data to date. The intuition
underlying this algorithm is simple: positive examples
result in changes (generalizations) to the set of maxi-
mally specific hypotheses while negative examples cause
the set of maximally general hypotheses to be refined
(made more specific). Since we are only interested in
the most specific hypotheses consistent with the train-
ing examples, we only need the FIND-S half [14, p. 29]
of the full algorithm.

TGENyg uses version spaces' to perform trace gen-
eralization by considering each loop iteration to be a
positive example, encoded as a feature vector with a
column for each command, argument, and (optionally)
argument attributes. We adopt a simple conjunctive
hypothesis language with “?” wildcards [13]; the se-
mantics of this representation is simple — a hypothe-
sis represents the set of examples (loop iterations) that
match the pattern. For example, the hypothesis

Cmdl | Argl | Cmd2 | Arg2
Copy | Subj | Paste | 7

We use Mooney’s Common Lisp version-space im-
plementation, available at ftp://ftp.cs.utexas.edu/pub/
mooney/ml-code/.

matches any two-action sequence whose first command
copies the subject into the clipboard and whose second
action pastes the clipboard into some file. A hypothesis
with & wildcards corresponds to a PBD procedure with
a k-nested loop. FIND-S requires a general-to-specific
order, so we say that hypothesis h; is equal to or more
general than hs if and only if for each conjunct ¢; in ho
the corresponding conjunct in h; either is equal to ¢; or
is the wildcard symbol.

Example 2: Consider the following simple execu-
tion trace adapted from the Eager paper [3] in which a
horizontal line separates the loop iterations.

Goto message #1, whose sender is “Dan”
Copy its subject to the clipboard

Paste from the clipboard into “Filel”
Goto message #2, whose sender is “Tessa”
Copy its subject to the clipboard

Paste from the clipboard into “Filel”

In TGENyg the previous trace is encoded as shown
below. We have chosen to represent only a single at-
tribute of Goto’s message argument: the message’s
sender. This choice is critical since an omitted attribute
(e.g., length or date) will never be considered during
generalization. This choice is independent of the learn-
ing algorithm and need only be done once per applica-
tion; in addition, it’s simpler and less restrictive than
hand-coding a procedure.

Actl | Argl | Sender | Act2 | Arg2 | Act3 | Arg3
Goto | 1 Dan Copy | Subj | Paste | Filel
Goto | 2 Tessa Copy | Subj | Paste | Filel

Using this conjunctive hypothesis language, TGENyg
quickly processes the two examples shown above and
returns
Actl | Argl
Goto | 7

Sender | Act2 | Arg2 | Act3 | Arg3
? Copy | Subj | Paste | Filel

as the most specific consistent hypothesis. In other
words, TGENyg predicts that the user is trying to copy
the subjects of all messages (regardless of sender or mes-
sage number) into Filel.

Our version space approach has both strengths and
weaknesses. On the plus side, the algorithm is sim-
ple, fast, and can generalize from two examples. This
low sample complexity is due to the very strong bias
afforded by a conjunctive hypothesis language.

This strong bias is also responsible for a major limita-
tion. The hypothesis language is incapable of expressing
a program that saves messages from Dan in one file and
messages from anyone else in another.

Example 3: Given the following training data:

Actl | Argl | Sender | Act2 | Arg2 | Act3 | Arg3
Goto | 1 Dan Copy | Subj | Paste | Filel
Goto | 2 Tessa, Copy | Subj | Paste | File2
Goto | 3 Dan Copy | Subj | Paste | Filel
Goto | 4 Oren Copy | Subj | Paste | File2

the TGENyg system produces

Actl | Argl | Sender | Act2 | Arg2 | Act3 | Arg3
Goto | 7 ? Copy | Subj | Paste | ?

which corresponds to an unintuitive loop in which the
user saves each message (regardless of sender) to all files.
Note that the hypothesis language is incapable of ex-
pressing a program that saves messages from Dan in
one file and messages from all others in another.

One might sidestep this problem by developing a more
expressive hypothesis language with limited disjunction,
but there is a more serious problem: it cannot handle
variable-length loop iterations, such as the one in exam-
ple 1. While the feature-vector approach is an improve-
ment over macros in that it handles a restricted class
of conditional loops, it breaks down if the individual
loop-iterations have a different number of actions, be-
cause the one-to-one correspondence between actions in
the iterations is lost. To address this problem, we next
consider a much more expressive hypothesis language:
recursive Datalog programs.

Inductive Logic Programming (FOIL)

An ILP learner, such as FOIL [22], is a first-order ex-
tension of a decision rule learner. It takes as input a set
of relational training examples classified into those that
are examples of a target concept (the positive examples)
and those that are not. From these examples the algo-
rithm learns an ordered set of Horn clauses that describe
the training examples in terms of the input relations.

The learner employs a sequential covering algorithm
which creates a rule to explain a subset of the positive
training examples, then removes these examples and re-
learns on the remainder, until all positive examples have
been covered.

Each rule is grown from general to specific. The
learner starts out with the empty rule (a Horn clause
with the target relation as its head and an empty body),
and then adds conjunctive literals to the rule until a
stopping criterion is met. At each step, the learner per-
forms a search for the best literal, based on an informa-
tion gain heuristic. The literals considered in the search
include instantiations of relations in the domain, equal-
ity over variables in the rule, and negations of any of
the above; the best of these literals is added to the rule.
Once the rule covers only positive training examples, it
is considered complete.

In summary, the algorithm can be viewed as a hill-
climbing search over the space of conjuncts of literals,
based on an information gain heuristic.

FOIL Formulation of PBD
The encoding of user actions for FOIL differs from the
feature vector encoding in four ways:

1. A predicate calculus ontology, instead of feature vec-
tors, encodes data about training examples.

ActionType: actl, act2, ..., actN.
CommandType: goto, copy, paste.
ArgumentType: argl, arg2, ..., argN.
TextType: subject.

FileType: filel, file2.

MesgType: mesgl, mesg2, ..., mesgM.
SenderType: dan, oren, tessa, corey.

Command(ActionType, CommandType)
Argument(ActionType, ArgumentType)
Before(ActionType, ActionType)
InSeq(MesgType, MesgType)
TextOfArg(ArgumentType, TextType)
FileOfArg(ArgumentType, FileType)
MesgOfArg(ArgumentType, MesgType)
SenderOfMesg(MesgType, SenderType)
CurrentMesg(ActionType, MesgType)
PrevCommand(ActionType, CommandType)

Figure 1: (Email ontology) Types and relations used in
describing the PBD learning problem. Target relations
are in bold and logically redundant relations (added to
reduce sample complexity) are in italics.

2. Examples correspond to individual actions instead of
loop iterations. This circumvents the problem with
variable-length loops, and enables a simpler user in-
terface in which the user need not manually identify
separate iterations, but it makes the learning problem
harder.

3. We encode a simple model of time so the learner can
utilize the order in which actions are executed when
generalizing. The feature vector encoding cannot ex-
press this information.

4. The closed world assumption (CWA) [23] provides
negative training examples — if the second command
is “Save message to filel,” then the second command
is not everything else. (It’s impossible to exploit these
negative examples without a notion of time, because
the user might eventually execute any action.)

We illustrate our TGENpoqp, algorithm in terms of a
hypothetical email application. Background informa-
tion about a user’s past interactions with the email
application is encoded in terms of a predicate calcu-
lus ontology, “Email,” whose types and primitive rela-
tions are shown in Figure 1. This ontology is based
on actions, which are the operations performed by the
user in the interface (e.g., going to a message, copying a
subject to the clipboard, or pasting from the clipboard
into a file). Each action is composed of an command
(e.g., goto, copy, or paste) and an argument that rep-
resents the argument of that command (e.g., the 57th
message in a mailbox, the subject of the current mes-
sage, Filel). Messages are structured objects; e.g., mes-

Action | Command | Arg | Message | Text File | Sender | CurrentMesg | PrevCommand
al goto argl | mesgl dan null null

a2 copy arg?2 subject mesgl goto

a3 paste arg3 filel mesgl copy

ad goto argd | mesg2 tessa mesgl paste

ab copy arg?2 subject mesg2 goto

ab paste arg3 filel mesg2 copy

a7 goto argb | mesg3 oren mesg2 paste

a8 copy arg?2 subject mesg3 goto

a9 paste arg3 filel mesg3 copy

Figure 2: Compact display of training examples in the Email ontology. Each line in the table represents a single
positive training example. The last two columns are redundant attributes which speed learning.

sages have a sender attribute that describes who sent
the message. The Before relation encodes background
knowledge about the ordering of actions; Before(e;,
e;) holds if and only if action e; is the immediate suc-
cessor of action e;. The InSeq relation expresses back-
ground knowledge about the ordering of messages in a
sequence and facilitates recognition of loops which it-
erate over message sequences. A full PBD application
would also include sequencing relations for other com-
mon sequences (e.g., days of the week).

User actions are converted into a set of literals in
this ontology. For example, if the user’s first move
is to Goto message #1 whose sender is Dan, this
action is represented by adding command (actl, goto),
argument (actl, argl), mesgofarg(argl, mesgl),
and senderofmesg(mesgl, dan) to the background
theory. In addition, the closed world assumption is used
to add negative literals, ensuring that (for example)
actl has only one command and one argument.

TGENpo1r, learns two ordered sets of Horn clauses
which respectively predict the user’s next command and
the argument to that command.

For example, Figure 2 shows nine positive training
examples in a compact form. It represents the first three
iterations of a loop in which the user is copying the
subject of successive messages (regardless of sender) and
pasting them into filel. Given these training examples
and their CWA complements, TGENpo1;, outputs the
following program:

command (A,goto) :- prevcommand(A,paste).
command (A, copy) :- prevcommand(A,goto).
command (A,paste) :- prevcommand(A,copy).
command(A,goto) :- prevcommand(A,null).

These rules allow a PBD system to predict the user’s
next command as follows: if the command of the last
action was a paste then she will next execute a goto.
If she last executed a goto, then the next command will
be a copy, and so on. The fourth rule is only useful for
classifying the user’s first command and has no predic-
tive value — it could be pruned during postprocessing.?

% Alternatively, we could modify the FOIL learning algo-
rithm so that it does not attempt to classify act1, but simply
uses it when classifying subsequent actions.

TGENpoqL, learns the following rules for argument
given the same training data:

argument (A,R) : -prevcommand (A, goto), textofarg(R,T).
argument (A,R) : -prevcommand (A, copy), fileofarg(R,F).
argument (A,R) : ~currentmesg(A,M), prevcommand(A,
paste), mesgofarg(R,N), inseq(M,N).
argument (A,R) : ~currentmesg(A,null),
mesgofarg(R,mesgl) .

The first rule states that action A has argument R
if the previous command was a goto and R has some
associated text T (the learner has exploited the fact that
“Subject” is the only known text attribute). The second
rule is similar: it says that if the previous command
was a copy then the argument to the next command
will be an argument with a fileofarg attribute, i.e.
filel. The third rule predicts the argument to a goto
command. If the previous command was a paste then
the argument will be an argument, R, whose message,
N, follows directly after (in sequence with) the current
message, M. The fourth rule is akin to the last command
rule above; it is only generated to classify the argument
of action act1, has no predictive value, and could be
pruned.

In this simple example, TGENpoy1, requires negligi-
ble CPU time and only nine positive examples, which
corresponds to three iterations of the user’s loop.

Conditional Loops

To test the power of our inductive logic programming
framework, we show how it is able to learn some loops
involving conditional constructs.

The first conditional loop revisits example 3, first de-
scribed in the section on version spaces. It is similar
to the previous task (example 2) of copying all mes-
sage subjects into a file, but in this case the user copies
the subjects of messages from Dan to Filel, and copies
the subjects of all other messages to File2. Using the
Email ontology, TGENpoqq, learns Horn clauses, which
are equivalent to the following pseudocode, in 4 itera-
tions (12 positive training examples):

For each message m in Mailbox:
Goto(m)
Copy (Subject)
If Sender(m) is Dan:
Paste(Filel)
else:
Paste(File2)

Example 1 (first presented in the introduction) is
a conditional, variable length loop where one path
through the loop contains two actions, and the other
path only contains one action. Using the Email ontol-
ogy, TGENpo11, learns Horn clauses equivalent to the
pseudocode presented in the introduction in as few as 9
training examples (seven iterations) and 0.3 CPU sec-
onds on a Pentium 90.

The next section describes several experiments that
shed further light on the power of theTGENyg and
TGENFpo7r, trace generalization methods.

EXPERIMENTAL RESULTS

In this section we report the results of two experiments.
First, we compare the speed and sample complexity of
TGENys and TGENgo1r, on a small set of email-domain
examples. Next, we measure the effect on TGENpo1r,
sample complexity of several different ontologies for rep-
resenting the email domain.

Comparison of Techniques

Figure 3 compares TGENyg and TGENpgq, on the
three examples described in the paper. Like Eager,
TGENvyg learns programs only for example 2, since the
remaining examples involve conditional constructs. Al-
though TGENpor, requires an additional iteration to
correctly learn this program, it is able to learn condi-
tional programs not expressible in TGENyg. These re-
sults show that our machine learning approach does as
well as or almost as well as Eager’s heuristic pattern-
matching-based approach (which required 2 iterations)
for example 2.

Ontological Comparison

The choice of an ontology has a very significant impact
on learnability. In the course of developing TGENyo1,
we experimented with a number of different ontologies
before converging to the Email ontology. In this sec-
tion we compare the sample size and CPU times during
induction of rules for argument in example 2 from the
previous section using the following ontologies:

e Email is the standard ontology, defined in the previ-
ous section.

e Email- is the same as Email except the redun-
dant currentmesg and prevcommand relations are
removed. Eliminating these relations decreases the

VS FOIL

actions | Time | # actions | Time
Example 1 - - 9 0.3
Example 2 6| 0.01 9 0.2
Example 3 - - 12 0.6

Figure 3: Comparison of TGENyg and TGENporr,- The
second column is the number of actions required to learn
the correct program. Examples 2 and 3 contain three
actions per iteration, while example 1 has a variable-
length loop. CPU times are in seconds on a Pentium
90. TGENysg receives each iteration as a single training
example. TGENvyg is not capable of learning correct
programs for either examples 1 or 3, both of which in-
volve conditionals.

branching factor of the space searched by FOIL, but
it increases the path length for a solution (and hence
increases the length of the resulting rules).

e Email3- adds to Email- a redundant
before3(actionType, actionType) relation,
where before3 holds for two actions a; and a; if
and only if j = ¢ + 3. Assuming that the iterative
loop is composed of exactly three actions, before3
should allow the learner to induce the desired rules
with a shallower search (at the cost of increased
branching factor). Our motivation for Email3— is as
follows. Since command and argument are learned
independently in Email, one can imagine a PBD
system learning the (easier) command rules first, and
then adding a new length-dependent relation to help
speed induction of argument.

e The “Combined Action” ontology replaces
command and argument with a new target
relation action(actionType, commandType,

argumentType), which relates an action to both
a command and an argument. It is motivated by
the observation that the command and argument
relations in Email- are separate and hence learned
independently; perhaps this makes the problem
harder.

e The “Big Relation” ontology replaces command
and argument with the target relation
action(actionType, commandType, mesgType,
textType, fileType, senderType). The ontology
was designed as an attempt to reduce the number of
conjuncts in each rule. Instead of learning command
and argument in terms of a number of small selector
relations, the system is given examples of (and must
learn) this single target relation.

Figure 4 shows the results of this experiment. The
Email ontology required the fewest training examples

Actions | CPU Time
Email 9 0.1
Email- 30 1.1
Email3- 9 0.1
Combined Action 84 28.2
Big Relation >99 6918.0

Figure 4: Comparison of sample size and CPU times for
different ontologies. The “# Actions” column reports
the number of training examples required to learn the
correct program; each iteration of the program is three
steps long. TGENgo1r, was unable to learn the correct
program for the Big Relation ontology in fewer than
100 training examples and several hours. Times are
reported using Quinlan’s FOIL on a Pentium 90 running
Linux and are measured in seconds.

to learn, but Email3— was comparable. The loop-
independent currentmesg and prevcommand give as
much benefit as before3 which hints about loop length.
TGENpoq1, was unable to learn the correct program for
the Big Relation ontology in under 100 training exam-
ples and several hours. This is unsurprising since the
branching factor of the search grows exponentially with
the arity of the target predicate; see Pazzani and Ki-
bler [19] for an analysis of FOIL’s complexity.

FUTURE WORK

Our work raises a number of research questions. The
primary concern for our TGENgo, system is whether
it will scale as the domain becomes more complex and as
program complexity increases. We can see several ways
to address the issue of scalability: prioritizing literals in
order to direct the heuristic search down more promising
paths; increasing the search bias by using FOCL [20] to
give the learner background information about previous
tasks or likely loop lengths; increasing bias by encoding
command-argument agreement constraints as a gram-
mar and learning with GRENDEL [2]; or asking the
user to disambiguate between several equally likely (to
the learner) alternatives.

Other machine learning algorithms may prove better
suited to PBD than either version spaces or inductive
logic programming. Explanation-based generalization
might use models of action preconditions and effects
to learn from a single example. A propositional rule
learner can learn disjunctive concepts and might elim-
inate some of TGENyg’s weaknesses. Since machine
learning algorithms are often sensitive to the available
attributes, it is important to experiment with alternate
ontologies and representations. A propositional learner
might be able to handle actions as training examples if
given a vocabulary of program templates (this approach
has been successfully applied to wrapper induction [7]).

Another open question is how our system should

deal with noisy data. Both of our implementations
would be confused if the user inserted an irrelevant
action or switched the order of two actions in subse-
quent iterations — even if the ordering is unimportant.
Planning-style reasoning with precondition-effect mod-
els [26] might alleviate this type of noise. The segmen-
tation problem can be viewed as a different type of noisy
data. Throughout this paper we have talked about gen-
eralization of pristine traces from which nonrepetitive
actions have been pruned, but a PBD system should be
capable of identifying the correct subsequence to gener-
alize. One promising approach is to use data mining to
learn only nuggets of high predictive value, rather than
attempting to classify the entire training set.

Finally, we plan to increase the breadth of our work
by incorporating it into a significant application such
as Microsoft Office, addressing interaction management,
and performing user studies to quantify potential bene-
fit.

CONCLUSION

Previous approaches to Programming by Demonstra-
tion have used brittle, domain-dependent heuristics in
order to minimize the number of user actions which
have to be observed before the system can generate a
useful generalization. In contrast, we implement PBD
trace generalization as an inductive learning problem,
raising the possibility of a robust, domain-independent
method for applying PBD to any application. We have
developed two prototypes, TGENyg and TGENpoIL,
and tested them in an email context motivated by Ea-
ger [3]. Both systems learn quickly; TGENyg has gener-
ally lower sample complexity due to a strong conjunctive
bias, but TGENyoq1, learns variable length conditional
loops which frustrate TGENyg. TGENporr, learns non-
trivial programs with as few as four iterations. We have
also measured the effect of the ontology on sample com-
plexity.

REFERENCES

[1] M. Bauer. Acquisition of Abstract Plan Descrip-
tions for Plan Recognition. In Proc. 15th Nat.
Conf. AL, 1998. To appear.

[2] William W. Cohen. Grammatically biased learn-
ing: learning logic programs using an explicit an-
tecedent description language. Artificial Intelli-
gence, 68:303-366, 1994.

[3] Allen Cypher. Eager: Programming repetitive
tasks by demonstration. In Allen Cypher, editor,
Watch What I Do: Programming by Demonstra-
tion, pages 205—217. MIT Press, Cambridge, MA,
1993.

[4]

[10]

[16]

Allen Cypher, editor. Watch What I Do: Program-
ming by Demonstration. MIT Press, Cambridge,
MA, 1993.

H. Kautz. A Formal Theory Of Plan Recognition.
PhD thesis, University of Rochester, 1987.

David Kurlander. Chimera: Example-Based
Graphical Editing. In Allen Cypher, editor, Watch
What I Do: Programming by Demonstration, pages
270-290. MIT Press, Cambridge, MA, 1993.

N. Kushmerick, D. Weld, and R. Doorenbos. Wrap-
per Induction for Information Extraction. In Proc.
15th Int. Joint Conf. AL 1997.

Neal Lesh and Oren Etzioni. A sound and fast goal
recognizer. In Proc. 14th Int. Joint Conf. Al pages
1704-1710, 1995.

Neal Lesh and Oren Etzioni. Scaling up goal recog-
nition. In Proc. 5th Int. Conf. Principles of Knowl-
edge Representation and Reasoning, pages 178-189,
1996.

Henry Lieberman. Tinker: A Programming by
Demonstration System for Beginning Program-
mers. In Allen Cypher, editor, Watch What I Do:
Programming by Demonstration, pages 49—64. MIT
Press, Cambridge, MA, 1993.

Pattie Maes and Robyn Kozierok. Learning inter-
face agents. In Proceedings of AAAI-93, pages 459—
465, 1993.

David Maulsby and Tan H. Witten. Cima: An
Interactive Concept Learning System for End-

User Applications. Applied Artificial Intelligence,
11:653-671, 1997.

T. Mitchell. Generalization as search. J. Artificial
Intelligence, 18:203-226, 1982.

T. Mitchell. Machine Learning. McGraw Hill, 1997.

Brad A. Myers. Peridot: Creating User Interfaces
by Demonstration. In Allen Cypher, editor, Watch
What I Do: Programming by Demonstration, pages
125-153. MIT Press, Cambridge, MA, 1993.

C.G. Nevill-Manning and I.H. Witten. Detecting
sequential structure. In Proc. Workshop on Pro-

gramming by Demonstration, ML’95, Tahoe City,
July 1995.

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

C.G. Nevill-Manning and L.H. Witten. Identify-
ing Hierarchical Structure in Sequences: A linear-
time algorithm. Journal of Artificial Intelligence
Research, 7:67-82, 1997.

Gordon W. Paynter. Generalising Programming
by Demonstration. In Proceedings Sixth Aus-
tralian Conference on Computer-Human Interac-
tion, pages 344-345, Nov 1996.

M. Pazzani and D. Kibler. The utility of prior
knowledge in inductive learning. Machine Learn-
ing, 9:54-97, 1992.

M. Pazzani and D. Kibler. The utility of knowledge
in inductive learning. Machine Learning, 9(1):57—
94, 1997.

M. Pollack. Inferring domain plans in question-
answering. PhD thesis, University of Pennslyvania,
1986.

J.R. Quinlan. Learning Logical Definitions from
Relations. Machine Learning, 5:239-266, 1997.

R. Reiter. On closed world databases. In H. Gal-
laire and J. Minker, editors, Logic and Data Bases,
pages 55-76. Plenum Press, 1978.

J. Schlimmer and L. Hermens. Software agents:
Completing patterns and constructing user inter-
faces. J. Artificial Intelligence Research, pages 61—
89, 1993.

R. Weida and D. Litman. Terminological Reason-
ing with Constraint Networks and an Application
to Plan Recognition. In Proc. 3rd Int. Conf. Prin-
ciples of Knowledge Representation and Reasoning,
October 1992.

D. Weld. An introduction to least-commitment
planning. Al Magazine, pages 27-61, Winter
1994. Available at ftp://ftp.cs.washington.-
edu/pub/ai/.

LH. Witten, C.G. Nevill-Manning, and D.L.
Maulsby. Interacting with learning agents: im-
plications for ml from hci. In Workshop on Ma-
chine Learning meets Human-Computer Interac-
tion, ML’96, pages 51-58, July 1996.

