
Programming by Demonstration�
An Inductive Learning Formulation�

Tessa A� Lau and Daniel S� Weld

Department of Computer Science and Engineering
University of Washington
Seattle� WA ����������

October 	� ����
ftlau� weldg�cs�washington�edu

ABSTRACT
Although Programming by Demonstration �PBD� has
the potential to improve the productivity of unsophis�
ticated users� previous PBD systems have used brittle�
heuristic� domain�speci�c approaches to execution�trace
generalization� In this paper we de�ne two application�
independent methods for performing generalization that
are based on well�understood machine learning technol�
ogy� TGenvs uses version�space generalization� and
TGenfoil is based on the FOIL inductive logic pro�

gramming algorithm� We analyze each method both
theoretically and empirically� arguing that TGenvs has
lower sample complexity� but TGenfoil can learn a
much more interesting class of programs�

Keywords

Programming by Demonstration� machine learning� in�
ductive logic programming� version spaces

INTRODUCTION

Computer users are largely unable to customize mass�
produced applications to �t their individual tasks� This
problem of end�user customization has been addressed
in several ways�

� Adjustable preferences and defaults are simple to use�
but limited to those options considered important by
the application designer�

�Our research was greatly improved by discussions with
and comments from Greg Badros� Alan Borning� Adam
Carlson� William Cohen� Pedro Domingos� Michael Ernst�
Oren Etzioni� Neal Lesh� Alon Levy� and Mike Perkowitz�
This research was funded by O�ce of Naval Research Grant
N��������������	� by National Science Foundation Grant
IRI��
�
���� and by ARPA � Rome Labs grant F
�������
������

� Applications that support macros allow users to
record a �xed sequence of actions and later replay this
sequence using a shortcut such as a mouse click or a
keypress� Macros require little sophistication to cre�
ate � the user simply records a normal interaction
with the application� however� macros have limited
utility if the repetitive task has minor variations�

� Scripting languages allow sophisticated users to write
programs to control the application� While this type
of customization allows a user the most control� it
also requires programming experience and knowledge
of the potentially complex scripting language and ap�
plication interface�

Programming by Demonstration �PBD� �	
 aims to
combine the simple interface of macros with the expres�
siveness of a scripting language� Like a macro recorder�
PBD allows users to construct a program by simply per�
forming actions in the user interface with which they are
already familiar� Unlike macros� however� the learned
programs can contain control structures such as itera�
tion� conditionals� and abstraction�

A complete PBD system consists of two major parts�
The trace generalizer constructs a programmatic repre�
sentation of the user�s actions by generalizing from an
execution trace to a program capable of producing that
trace� The interaction manager explains the resulting
program to the user and gains authorization before ex�
ecuting the program on the user�s behalf�

Example �� Suppose a user performed the following
sequence of actions using an email application�

Goto Message �� whose sender is Corey
Goto Message �� whose sender is Oren
Goto Message �� whose sender is Dan
Forward the current message to Tessa
Goto Message �� whose sender is Corey
Goto Message 	� whose sender is Dan
Forward the current message to Tessa
Goto Message �� whose sender is Corey
Goto Message �� whose sender is Corey

Given this execution trace� a PBD trace generalizer
might conjecture that the user is �forwarding to Tessa
all email messages sent from Dan�� and output the fol�
lowing procedure�

For each message m in Mailbox�
Goto�m�

If Sender�m� is Dan�
Then Forward�m� Tessa�

The PBD system�s interaction manager would describe
the procedure to the user� accept any user�speci�ed re�
�nements to the program� o�er to execute the code�
highlight the resulting e�ects� and implement an undo
facility�
This paper focuses on the problem of PBD trace gen�

eralization� Previous PBD systems have used brittle�
heuristic approaches� In contrast� we de�ne two ro�
bust� application�independent methods for performing
generalization based on well�understood machine learn�
ing technology�

� Version�space generalization �TGenvs�

� Inductive logic programming �TGenfoil�

We theoretically and empirically analyze these two im�
plemented systems� o�ering a rational reconstruction of
aspects of the Eager ��
 PBD system� TGenvs can
learn with fewer examples� but TGenfoil can learn a
much more interesting class of programs� such as pro�
grams with variable�length loop iterations� For exam�
ple� TGenfoil quickly learns a program equivalent to
the one shown above from the training examples shown�

PRIOR WORK

A complete PBD system is composed of trace general�

izer and interaction manager components� Generalizing
from an execution trace to a program involves �among
other things� determining the length of an iterative loop�
noticing regular changes in each iteration of such a loop�
and recognizing conditional constructs� The interaction
manager� on the other hand� explains the generaliza�
tion to the user and obtains authorization for program
execution� Although prior PBD systems have made sig�
ni�cant contributions to both of these components� our
work is restricted to trace generalization so we focus on
that aspect in this discussion�
Cypher �	
 describes many PBD systems� The Ea�

ger ��
 system detects and automates repetitive ac�
tions in Hypercard applications� Each user action is
compared against the action history using a pattern�
matching scheme� Once the system detects a repeti�
tive sequence� it highlights its prediction of the next
action� and o�ers to automate the remainder of the se�
quence� Peridot ���
 allows programmers to construct
user interfaces by drawing them interactively� It uses a
set of condition�action rules to determine when to infer
constraints over widget placement and iterations over

sequences� Cima ���
 learns text editing commands by
example� it relies on user hints� rather than multiple ex�
amples� to disambiguate possible programs� Chimera ��

generalizes constraints between graphical objects from
multiple snapshots and provides a macro�by�example fa�
cility for creating macros in a graphical editing domain�
Tinker ���
 supports programming Lisp by demonstra�
tion� but performs no inference� instead relying on the
user to disambiguate the examples�
These PBD systems all rely on heuristic rules to

describe when a generalization is appropriate� These
heuristics make PBD systems �like the rule�based ex�
pert systems on which they are modelled� brittle� labo�
rious to construct� and di�cult to extend� For instance�
Eager is hardcoded to recognize a �xed set of sequences
over which a user may iterate� such as the email mes�
sages in a mailbox or the days of the week� Peridot uses
a set of domain�dependent condition�action rules to in�
fer constraints and loops� Unfortunately� these fragile
heuristics must be hand�crafted for each domain� In
contrast� we advocate using established machine learn�
ing techniques to perform robust trace generalization�
As we demonstrate in the remainder of this paper� our
approach also yields low sample complexity � TGenvs

and TGenfoil are capable of generalizing from a small
number of training examples�
Others have considered applying domain�independent

algorithms to PBD� Witten et al ���
 identify shortcom�
ings in current machine learning approaches when ap�
plied to PBD� such as an inability to take advantage
of domain knowledge or user hints� Paynter sketches
out a general�purpose PBD framework using machine
learning ���
� Nevill�Manning and Witten ���� ��
 de�
scribe a linear�time algorithm for detecting hierarchical
structure in sequences by generalizing a grammar from
repeated subsequences in a single example� Their al�
gorithm is elegantly simple� but it is not obvious how
to apply background knowledge to bias the generated
grammars�
Plan recognition ���� �
 typically requires a large li�

brary of possible plans which are checked against user
actions� This work may be viewed as inductive learning
with a very strong bias �the plan library�� Bauer ��

presents algorithms for constructing plan libraries from
a corpus of logged user traces and optional action mod�
els� Weida and Litman ���
 use terminological sub�
sumption with temporal constraint networks to match
execution sequences with library plans� Lesh and Et�
zioni ��� �
 adapt the version space algorithm to perform
goal recognition with an implicit plan�library represen�
tation which is constructed by reasoning about action
preconditions and e�ects�
Our work is similar to previous machine learning ef�

forts at developing self�customizing software� Schlim�
mer and Hermens ��	
 describe a note�taking system
that predicts what the user is going to write and fa�

cilitates completion� the system works by learning a
�nite state machine �FSM� modeling note syntax and
decision tree classi�ers for each FSM state� Maes and
Kozierok ���
 use nearest�neighbor learning �adjusted
by user feedback� to predict the user�s next action from
the action most recently executed� but in contrast to
our work there is no attempt to learn loops�

PBD AS AN INDUCTIVE LEARNING PROBLEM

By watching a user�s actions� a PBD system must induce
the abstract procedure that the human is executing� In
this section we consider two di�erent ways of encoding
PBD trace generalization as an inductive learning prob�
lem�

� In the version�space encoding� each example is an it�
eration of a loop �i�e�� an ordered sequence of actions��
and the system generalizes from multiple iterations�

� In the inductive logic programming encoding� exam�
ples are relational descriptions of individual user ac�
tions� and the system learns a Datalog program� an
ordered set of �rst�order rules that predict the next
action to be executed�

In the remainder of this section� we elaborate on these
encodings and discuss their relative advantages�

Version Space Encoding

Version space algorithms ���
 use a general�to�speci�c
ordering among possible hypotheses to maintain a com�
pact representation �the set of maximally speci�c and
the set of maximally general hypotheses� of the version
space� the set of expressible hypotheses which are con�
sistent with the training data to date� The intuition
underlying this algorithm is simple� positive examples
result in changes �generalizations� to the set of maxi�
mally speci�c hypotheses while negative examples cause
the set of maximally general hypotheses to be re�ned
�made more speci�c�� Since we are only interested in
the most speci�c hypotheses consistent with the train�
ing examples� we only need the Find�S half ��	� p� ��

of the full algorithm�
TGenvs uses version spaces� to perform trace gen�

eralization by considering each loop iteration to be a
positive example� encoded as a feature vector with a
column for each command� argument� and �optionally�
argument attributes� We adopt a simple conjunctive
hypothesis language with ��� wildcards ���
� the se�
mantics of this representation is simple � a hypothe�
sis represents the set of examples �loop iterations� that
match the pattern� For example� the hypothesis

Cmd� Arg� Cmd Arg
Copy Subj Paste �

�We use Mooney�s Common Lisp version�space im�
plementation� available at ftp���ftp�cs�utexas�edu�pub�
mooney�ml�code��

matches any two�action sequence whose �rst command
copies the subject into the clipboard and whose second
action pastes the clipboard into some �le� A hypothesis
with k wildcards corresponds to a PBD procedure with
a k�nested loop� Find�S requires a general�to�speci�c
order� so we say that hypothesis h� is equal to or more
general than h� if and only if for each conjunct ci in h�
the corresponding conjunct in h� either is equal to ci or
is the wildcard symbol�
Example �� Consider the following simple execu�

tion trace adapted from the Eager paper ��
 in which a
horizontal line separates the loop iterations�

Goto message �� whose sender is �Dan�
Copy its subject to the clipboard
Paste from the clipboard into �File��
Goto message �� whose sender is �Tessa�
Copy its subject to the clipboard
Paste from the clipboard into �File��

In TGenvs the previous trace is encoded as shown
below� We have chosen to represent only a single at�
tribute of Goto�s message argument� the message�s
sender� This choice is critical since an omitted attribute
�e�g�� length or date� will never be considered during
generalization� This choice is independent of the learn�
ing algorithm and need only be done once per applica�
tion� in addition� it�s simpler and less restrictive than
hand�coding a procedure�

Act� Arg� Sender Act Arg Act
 Arg

Goto � Dan Copy Subj Paste File�
Goto Tessa Copy Subj Paste File�

Using this conjunctive hypothesis language� TGenvs
quickly processes the two examples shown above and
returns

Act� Arg� Sender Act Arg Act
 Arg

Goto � � Copy Subj Paste File�

as the most speci�c consistent hypothesis� In other
words� TGenvs predicts that the user is trying to copy
the subjects of all messages �regardless of sender or mes�
sage number� into File��
Our version space approach has both strengths and

weaknesses� On the plus side� the algorithm is sim�
ple� fast� and can generalize from two examples� This
low sample complexity is due to the very strong bias
a�orded by a conjunctive hypothesis language�
This strong bias is also responsible for a major limita�

tion� The hypothesis language is incapable of expressing
a program that saves messages from Dan in one �le and
messages from anyone else in another�
Example �� Given the following training data�

Act� Arg� Sender Act Arg Act
 Arg

Goto � Dan Copy Subj Paste File�
Goto Tessa Copy Subj Paste File
Goto
 Dan Copy Subj Paste File�
Goto � Oren Copy Subj Paste File

the TGenvs system produces

Act� Arg� Sender Act Arg Act
 Arg

Goto � � Copy Subj Paste �

which corresponds to an unintuitive loop in which the
user saves each message �regardless of sender� to all �les�
Note that the hypothesis language is incapable of ex�
pressing a program that saves messages from Dan in
one �le and messages from all others in another�
One might sidestep this problem by developing a more

expressive hypothesis language with limited disjunction�
but there is a more serious problem� it cannot handle
variable�length loop iterations� such as the one in exam�
ple �� While the feature�vector approach is an improve�
ment over macros in that it handles a restricted class
of conditional loops� it breaks down if the individual
loop�iterations have a di�erent number of actions� be�
cause the one�to�one correspondence between actions in
the iterations is lost� To address this problem� we next
consider a much more expressive hypothesis language�
recursive Datalog programs�

Inductive Logic Programming �FOIL�

An ILP learner� such as FOIL ���
� is a �rst�order ex�
tension of a decision rule learner� It takes as input a set
of relational training examples classi�ed into those that
are examples of a target concept �the positive examples�
and those that are not� From these examples the algo�
rithm learns an ordered set of Horn clauses that describe
the training examples in terms of the input relations�
The learner employs a sequential covering algorithm

which creates a rule to explain a subset of the positive
training examples� then removes these examples and re�
learns on the remainder� until all positive examples have
been covered�
Each rule is grown from general to speci�c� The

learner starts out with the empty rule �a Horn clause
with the target relation as its head and an empty body��
and then adds conjunctive literals to the rule until a
stopping criterion is met� At each step� the learner per�
forms a search for the best literal� based on an informa�
tion gain heuristic� The literals considered in the search
include instantiations of relations in the domain� equal�
ity over variables in the rule� and negations of any of
the above� the best of these literals is added to the rule�
Once the rule covers only positive training examples� it
is considered complete�
In summary� the algorithm can be viewed as a hill�

climbing search over the space of conjuncts of literals�
based on an information gain heuristic�

FOIL Formulation of PBD

The encoding of user actions for FOIL di�ers from the
feature vector encoding in four ways�

�� A predicate calculus ontology� instead of feature vec�
tors� encodes data about training examples�

ActionType� act�� act�� ���� actN�
CommandType� goto� copy� paste�
ArgumentType� arg�� arg�� ���� argN�
TextType� subject�
FileType� �le�� �le��
MesgType� mesg�� mesg�� ���� mesgM�
SenderType� dan� oren� tessa� corey�

Command�ActionType� CommandType�
Argument�ActionType� ArgumentType�
Before�ActionType� ActionType�
InSeq�MesgType� MesgType�
TextOfArg�ArgumentType� TextType�
FileOfArg�ArgumentType� FileType�
MesgOfArg�ArgumentType� MesgType�
SenderOfMesg�MesgType� SenderType�
CurrentMesg�ActionType� MesgType�
PrevCommand�ActionType� CommandType�

Figure �� �Email ontology� Types and relations used in
describing the PBD learning problem� Target relations
are in bold and logically redundant relations �added to
reduce sample complexity� are in italics�

�� Examples correspond to individual actions instead of
loop iterations� This circumvents the problem with
variable�length loops� and enables a simpler user in�
terface in which the user need not manually identify
separate iterations� but it makes the learning problem
harder�

�� We encode a simple model of time so the learner can
utilize the order in which actions are executed when
generalizing� The feature vector encoding cannot ex�
press this information�

	� The closed world assumption �CWA� ���
 provides
negative training examples � if the second command
is �Save message to �le��� then the second command
is not everything else� �It�s impossible to exploit these
negative examples without a notion of time� because
the user might eventually execute any action��

We illustrate our TGenfoil algorithm in terms of a
hypothetical email application� Background informa�
tion about a user�s past interactions with the email
application is encoded in terms of a predicate calcu�
lus ontology� �Email�� whose types and primitive rela�
tions are shown in Figure �� This ontology is based
on actions� which are the operations performed by the
user in the interface �e�g�� going to a message� copying a
subject to the clipboard� or pasting from the clipboard
into a �le�� Each action is composed of an command

�e�g�� goto� copy� or paste� and an argument that rep�
resents the argument of that command �e�g�� the ��th
message in a mailbox� the subject of the current mes�
sage� File��� Messages are structured objects� e�g�� mes�

Action Command Arg Message Text File Sender CurrentMesg PrevCommand
a� goto arg� mesg� dan null null
a copy arg subject mesg� goto
a
 paste arg
 �le� mesg� copy
a� goto arg� mesg tessa mesg� paste
a� copy arg subject mesg goto
a� paste arg
 �le� mesg copy
a	 goto arg� mesg
 oren mesg paste
a� copy arg subject mesg
 goto
a� paste arg
 �le� mesg
 copy

Figure �� Compact display of training examples in the Email ontology� Each line in the table represents a single
positive training example� The last two columns are redundant attributes which speed learning�

sages have a sender attribute that describes who sent
the message� The Before relation encodes background
knowledge about the ordering of actions� Before�ei�

ej� holds if and only if action ej is the immediate suc�
cessor of action ei� The InSeq relation expresses back�
ground knowledge about the ordering of messages in a
sequence and facilitates recognition of loops which it�
erate over message sequences� A full PBD application
would also include sequencing relations for other com�
mon sequences �e�g�� days of the week��
User actions are converted into a set of literals in

this ontology� For example� if the user�s �rst move
is to Goto message � whose sender is Dan� this
action is represented by adding command�act�� goto��
argument�act�� arg��� mesgofarg�arg�� mesg���
and senderofmesg�mesg�� dan� to the background
theory� In addition� the closed world assumption is used
to add negative literals� ensuring that �for example�
act� has only one command and one argument�
TGenfoil learns two ordered sets of Horn clauses

which respectively predict the user�s next command and
the argument to that command�
For example� Figure � shows nine positive training

examples in a compact form� It represents the �rst three
iterations of a loop in which the user is copying the
subject of successive messages �regardless of sender� and
pasting them into �le�� Given these training examples
and their CWA complements� TGenfoil outputs the
following program�

command�A�goto� �� prevcommand�A�paste��
command�A�copy� �� prevcommand�A�goto��
command�A�paste� �� prevcommand�A�copy��
command�A�goto� �� prevcommand�A�null��

These rules allow a PBD system to predict the user�s
next command as follows� if the command of the last
action was a paste then she will next execute a goto�
If she last executed a goto� then the next command will
be a copy� and so on� The fourth rule is only useful for
classifying the user�s �rst command and has no predic�
tive value � it could be pruned during postprocessing��

�Alternatively� we could modify the FOIL learning algo�
rithm so that it does not attempt to classify act�� but simply
uses it when classifying subsequent actions�

TGenfoil learns the following rules for argument
given the same training data�

argument�A�R���prevcommand�A�goto�� textofarg�R�T��
argument�A�R���prevcommand�A�copy�� fileofarg�R�F��
argument�A�R���currentmesg�A�M�� prevcommand�A�

paste�� mesgofarg�R�N�� inseq�M�N��
argument�A�R���currentmesg�A�null��

mesgofarg�R�mesg���

The �rst rule states that action A has argument R
if the previous command was a goto and R has some

associated text T �the learner has exploited the fact that
�Subject� is the only known text attribute�� The second
rule is similar� it says that if the previous command
was a copy then the argument to the next command
will be an argument with a fileofarg attribute� i�e�
file�� The third rule predicts the argument to a goto

command� If the previous command was a paste then
the argument will be an argument� R� whose message�
N� follows directly after �in sequence with� the current
message� M� The fourth rule is akin to the last command
rule above� it is only generated to classify the argument
of action act�� has no predictive value� and could be
pruned�

In this simple example� TGenfoil requires negligi�
ble CPU time and only nine positive examples� which
corresponds to three iterations of the user�s loop�

Conditional Loops

To test the power of our inductive logic programming
framework� we show how it is able to learn some loops
involving conditional constructs�

The �rst conditional loop revisits example �� �rst de�
scribed in the section on version spaces� It is similar
to the previous task �example �� of copying all mes�
sage subjects into a �le� but in this case the user copies
the subjects of messages from Dan to File�� and copies
the subjects of all other messages to File�� Using the
Email ontology� TGenfoil learns Horn clauses� which
are equivalent to the following pseudocode� in 	 itera�
tions ��� positive training examples��

For each message m in Mailbox�

Goto�m�
Copy�Subject�

If Sender�m� is Dan�

Paste�File��
else�

Paste�File��

Example � ��rst presented in the introduction� is
a conditional� variable length loop where one path
through the loop contains two actions� and the other
path only contains one action� Using the Email ontol�
ogy� TGenfoil learns Horn clauses equivalent to the
pseudocode presented in the introduction in as few as �
training examples �seven iterations� and ��� CPU sec�
onds on a Pentium ���
The next section describes several experiments that

shed further light on the power of theTGenvs and
TGenfoil trace generalization methods�

EXPERIMENTAL RESULTS

In this section we report the results of two experiments�
First� we compare the speed and sample complexity of
TGenvs and TGenfoil on a small set of email�domain
examples� Next� we measure the e�ect on TGenfoil

sample complexity of several di�erent ontologies for rep�
resenting the email domain�

Comparison of Techniques

Figure � compares TGenvs and TGenfoil on the
three examples described in the paper� Like Eager�
TGenvs learns programs only for example �� since the
remaining examples involve conditional constructs� Al�
though TGenfoil requires an additional iteration to
correctly learn this program� it is able to learn condi�
tional programs not expressible in TGenvs� These re�
sults show that our machine learning approach does as
well as or almost as well as Eager�s heuristic pattern�
matching�based approach �which required � iterations�
for example ��

Ontological Comparison

The choice of an ontology has a very signi�cant impact
on learnability� In the course of developing TGenfoil
we experimented with a number of di�erent ontologies
before converging to the Email ontology� In this sec�
tion we compare the sample size and CPU times during
induction of rules for argument in example � from the
previous section using the following ontologies�

� Email is the standard ontology� de�ned in the previ�
ous section�

� Email� is the same as Email except the redun�
dant currentmesg and prevcommand relations are
removed� Eliminating these relations decreases the

VS FOIL
 actions Time actions Time

Example � � � � ���
Example � � ���� � ���
Example � � � �� ���

Figure �� Comparison of TGenvs and TGenfoil� The
second column is the number of actions required to learn
the correct program� Examples � and � contain three
actions per iteration� while example � has a variable�
length loop� CPU times are in seconds on a Pentium
��� TGenvs receives each iteration as a single training
example� TGenvs is not capable of learning correct
programs for either examples � or �� both of which in�
volve conditionals�

branching factor of the space searched by FOIL� but
it increases the path length for a solution �and hence
increases the length of the resulting rules��

� Email�� adds to Email� a redundant
before��actionType� actionType� relation�
where before� holds for two actions ai and aj if
and only if j � i � �� Assuming that the iterative
loop is composed of exactly three actions� before�
should allow the learner to induce the desired rules
with a shallower search �at the cost of increased
branching factor�� Our motivation for Email�� is as
follows� Since command and argument are learned
independently in Email� one can imagine a PBD
system learning the �easier� command rules �rst� and
then adding a new length�dependent relation to help
speed induction of argument�

� The �Combined Action� ontology replaces
command and argument with a new target
relation action�actionType� commandType�
argumentType�� which relates an action to both
a command and an argument� It is motivated by
the observation that the command and argument
relations in Email� are separate and hence learned
independently� perhaps this makes the problem
harder�

� The �Big Relation� ontology replaces command

and argument with the target relation
action�actionType� commandType� mesgType�
textType� fileType� senderType�� The ontology
was designed as an attempt to reduce the number of
conjuncts in each rule� Instead of learning command
and argument in terms of a number of small selector
relations� the system is given examples of �and must
learn� this single target relation�

Figure 	 shows the results of this experiment� The
Email ontology required the fewest training examples

 Actions CPU Time
Email � ���
Email� �� ���
Email�� � ���
Combined Action �	 ����
Big Relation ��� ������

Figure 	� Comparison of sample size and CPU times for
di�erent ontologies� The � Actions� column reports
the number of training examples required to learn the
correct program� each iteration of the program is three
steps long� TGenfoil was unable to learn the correct
program for the Big Relation ontology in fewer than
��� training examples and several hours� Times are
reported using Quinlan�s FOIL on a Pentium �� running
Linux and are measured in seconds�

to learn� but Email�� was comparable� The loop�
independent currentmesg and prevcommand give as
much bene�t as before� which hints about loop length�
TGenfoil was unable to learn the correct program for
the Big Relation ontology in under ��� training exam�
ples and several hours� This is unsurprising since the
branching factor of the search grows exponentially with
the arity of the target predicate� see Pazzani and Ki�
bler ���
 for an analysis of FOIL�s complexity�

FUTURE WORK

Our work raises a number of research questions� The
primary concern for our TGenfoil system is whether
it will scale as the domain becomes more complex and as
program complexity increases� We can see several ways
to address the issue of scalability� prioritizing literals in
order to direct the heuristic search down more promising
paths� increasing the search bias by using FOCL ���
 to
give the learner background information about previous
tasks or likely loop lengths� increasing bias by encoding
command�argument agreement constraints as a gram�
mar and learning with GRENDEL ��
� or asking the
user to disambiguate between several equally likely �to
the learner� alternatives�
Other machine learning algorithms may prove better

suited to PBD than either version spaces or inductive
logic programming� Explanation�based generalization
might use models of action preconditions and e�ects
to learn from a single example� A propositional rule
learner can learn disjunctive concepts and might elim�
inate some of TGenvs�s weaknesses� Since machine
learning algorithms are often sensitive to the available
attributes� it is important to experiment with alternate
ontologies and representations� A propositional learner
might be able to handle actions as training examples if
given a vocabulary of program templates �this approach
has been successfully applied to wrapper induction ��
��
Another open question is how our system should

deal with noisy data� Both of our implementations
would be confused if the user inserted an irrelevant
action or switched the order of two actions in subse�
quent iterations � even if the ordering is unimportant�
Planning�style reasoning with precondition�e�ect mod�
els ���
 might alleviate this type of noise� The segmen�
tation problem can be viewed as a di�erent type of noisy
data� Throughout this paper we have talked about gen�
eralization of pristine traces from which nonrepetitive
actions have been pruned� but a PBD system should be
capable of identifying the correct subsequence to gener�
alize� One promising approach is to use data mining to
learn only nuggets of high predictive value� rather than
attempting to classify the entire training set�

Finally� we plan to increase the breadth of our work
by incorporating it into a signi�cant application such
as Microsoft O�ce� addressing interaction management�
and performing user studies to quantify potential bene�
�t�

CONCLUSION

Previous approaches to Programming by Demonstra�
tion have used brittle� domain�dependent heuristics in
order to minimize the number of user actions which
have to be observed before the system can generate a
useful generalization� In contrast� we implement PBD
trace generalization as an inductive learning problem�
raising the possibility of a robust� domain�independent
method for applying PBD to any application� We have
developed two prototypes� TGenvs and TGenfoil�
and tested them in an email context motivated by Ea�
ger ��
� Both systems learn quickly� TGenvs has gener�
ally lower sample complexity due to a strong conjunctive
bias� but TGenfoil learns variable length conditional
loops which frustrate TGenvs� TGenfoil learns non�
trivial programs with as few as four iterations� We have
also measured the e�ect of the ontology on sample com�
plexity�

REFERENCES

��
 M� Bauer� Acquisition of Abstract Plan Descrip�
tions for Plan Recognition� In Proc� ��th Nat�
Conf� AI� ����� To appear�

��
 William W� Cohen� Grammatically biased learn�
ing� learning logic programs using an explicit an�
tecedent description language� Arti�cial Intelli�
gence� ����������� ���	�

��
 Allen Cypher� Eager� Programming repetitive
tasks by demonstration� In Allen Cypher� editor�
Watch What I Do� Programming by Demonstra�
tion� pages �������� MIT Press� Cambridge� MA�
�����

�	
 Allen Cypher� editor� Watch What I Do� Program�

ming by Demonstration� MIT Press� Cambridge�
MA� �����

��
 H� Kautz� A Formal Theory Of Plan Recognition�
PhD thesis� University of Rochester� �����

��
 David Kurlander� Chimera� Example�Based
Graphical Editing� In Allen Cypher� editor� Watch
What I Do� Programming by Demonstration� pages
�������� MIT Press� Cambridge� MA� �����

��
 N� Kushmerick� D� Weld� and R� Doorenbos� Wrap�
per Induction for Information Extraction� In Proc�
��th Int� Joint Conf� AI� �����

��
 Neal Lesh and Oren Etzioni� A sound and fast goal
recognizer� In Proc� ��th Int� Joint Conf� AI� pages
���	������ �����

��
 Neal Lesh and Oren Etzioni� Scaling up goal recog�
nition� In Proc� �th Int� Conf� Principles of Knowl�
edge Representation and Reasoning� pages ��������
�����

���
 Henry Lieberman� Tinker� A Programming by
Demonstration System for Beginning Program�
mers� In Allen Cypher� editor� Watch What I Do�

Programming by Demonstration� pages 	���	� MIT
Press� Cambridge� MA� �����

���
 Pattie Maes and Robyn Kozierok� Learning inter�
face agents� In Proceedings of AAAI���� pages 	���
	��� �����

���
 David Maulsby and Ian H� Witten� Cima� An
Interactive Concept Learning System for End�
User Applications� Applied Arti�cial Intelligence�
����������� �����

���
 T� Mitchell� Generalization as search� J� Arti�cial
Intelligence� ����������� �����

��	
 T� Mitchell� Machine Learning� McGraw Hill� �����

���
 Brad A� Myers� Peridot� Creating User Interfaces
by Demonstration� In Allen Cypher� editor� Watch

What I Do� Programming by Demonstration� pages
�������� MIT Press� Cambridge� MA� �����

���
 C�G� Nevill�Manning and I�H� Witten� Detecting
sequential structure� In Proc� Workshop on Pro�

gramming by Demonstration	 ML
��	 Tahoe City�
July �����

���
 C�G� Nevill�Manning and I�H� Witten� Identify�
ing Hierarchical Structure in Sequences� A linear�
time algorithm� Journal of Arti�cial Intelligence

Research� �������� �����

���
 Gordon W� Paynter� Generalising Programming
by Demonstration� In Proceedings Sixth Aus�
tralian Conference on Computer�Human Interac�

tion� pages �		��	�� Nov �����

���
 M� Pazzani and D� Kibler� The utility of prior
knowledge in inductive learning� Machine Learn�
ing� ���	���� �����

���
 M� Pazzani and D� Kibler� The utility of knowledge
in inductive learning� Machine Learning� ��������
�	� �����

���
 M� Pollack� Inferring domain plans in question�
answering� PhD thesis� University of Pennslyvania�
�����

���
 J�R� Quinlan� Learning Logical De�nitions from
Relations� Machine Learning� ���������� �����

���
 R� Reiter� On closed world databases� In H� Gal�
laire and J� Minker� editors� Logic and Data Bases�
pages ������ Plenum Press� �����

��	
 J� Schlimmer and L� Hermens� Software agents�
Completing patterns and constructing user inter�
faces� J� Arti�cial Intelligence Research� pages ���
��� �����

���
 R� Weida and D� Litman� Terminological Reason�
ing with Constraint Networks and an Application
to Plan Recognition� In Proc� �rd Int� Conf� Prin�

ciples of Knowledge Representation and Reasoning�
October �����

���
 D� Weld� An introduction to least�commitment
planning� AI Magazine� pages ������ Winter
���	� Available at ftp�		ftp�cs�washington�

edu	pub	ai	�

���
 I�H� Witten� C�G� Nevill�Manning� and D�L�
Maulsby� Interacting with learning agents� im�
plications for ml from hci� In Workshop on Ma�
chine Learning meets Human�Computer Interac�

tion	 ML
��� pages ������ July �����

