
Presented at the International Workshop On Agents in Design - WAID'02.
Cambridge, MA, August 2002.

AN AGENT-BASED SYSTEM FOR CAPTURING AND INDEXING
SOFTWARE DESIGN MEETINGS

TRACY HAMMOND, KRZYSZTOF GAJOS
MIT Artificial Intelligence Laboratory
200 Technology Square
Cambridge, MA 02139, USA
{hammond, kgajos} @ai.mit.edu

and

RANDALL DAVIS, HOWARD SHROBE
{davis, hes} @ai.mit.edu

Abstract. We present an agent-based system for capturing and
indexing software design meetings. During these meetings, designers
design object-oriented software tools, including new agent-based
technologies for the Intelligent Room, by sketching UML-type designs
on a white-board. To capture the design meeting history, the Design
Meeting Agent requests available audio, video, and screen capture
services from the environment and uses them to capture the entire
design meeting. However, finding a particular moment of the design
history video and audio records can be cumbersome without a proper
indexing scheme. To detect, index, and timestamp significant events
in the design process, the Tahuti Agent, also started by the Design
Meeting Agent, records, recognizes, and understands the UML-type
sketches drawn during the meeting. These timestamps can be mapped
to particular moments in the captured video and audio, aiding in the
retrieval of the captured information. Metaglue, a multi-agent system,
provides the computational glue necessary to bind the distributed
components of the system together. It also provides necessary tools
for seamless multi-modal interaction between the varied agents and the
users.

1. Introduction

Design rationale has been defined in a variety of ways, but all definitions
concur that design rationale attempts to determine the why behind the design
(Louridas and Loucopoulos, 2000; Moran and Carroll, 1996). Design
rationale is the externalization and documentation of the reasons behind

2 HAMMOND, GAJOS, DAVIS, AND SHROBE

design decisions, including the design’s artifact features. For the purposes
of this paper, we choose the following definition borrowed from Moran and
Carroll (1996) for design rationale: Documentation of (a) the reasons for the
design of an artifact, (b) the stages or steps of the design process, (c) the
history of the design and its context. Louridas and Loucopoulos claim that
the design rationale research field includes all research pertaining to the
capture, recording, documentation, and effective use of rationale in the
development processes. The researchers state that a complete record, by
which they define to be a video of the whole development process,
combined with any materials used and produced, could, in theory, be used to
find the rationale behind the decisions taken. However, they claim that this
unformatted data would be unwieldy through which to process and search.
Thus design rationale research has generally encouraged the structuring of
design to provide a proposed formalism using a small set of concepts
appropriate for representing the deliberations taking place.
 A considerable body of effort has been devoted to capturing and
indexing design rationale. One part of design rationale is documentation of
the design history (Louridas and Loucopoulos, 2000; Moran and Carroll,
1996). While videotaping a design session can capture the design history,
retrieval may require watching the entire video. Retrieval can be made
simpler by structuring the design process, but this can hold back fast-
flowing design meetings (Shum et al., 1996). There is an apparent tension
between the simplicity of design rationale capture and effectiveness of
design rationale retrieval (Shipman and McCall, 1997). We hope to bridge
this gap by allowing designers to design as they would naturally, yet also
supply the tools that understand those designs and allow the designer to use
this understanding to help in retrieving appropriate moments of a design
meeting.
 This paper addresses the use of advanced multi-modal tools to aid in
collaborative design meeting indexing. In particular, we are concerned with
the MIT AI Lab’s Intelligent Room (Hanssens, et al. 2002), a mature, yet
still evolving, system. The software infrastructure behind the Intelligent
Room is a multi-agent system called Metaglue (Coen, Phillips, et al. 1999).
Metaglue currently supports robust communication among distributed
agents, complex resource discovery and management mechanisms, as well
as support for multi-modal interactions through speech, gesture, graphical
UI’s, web interfaces, and other sensory channels.
 Traditionally, when new components need to be added to the Intelligent
Room’s software, a small number of designers gather in the Room and
sketch the new design on the whiteboards while discussing their decisions.
What gets recorded after those sessions is the final design and the
explanation of the mechanisms employed. What gets omitted, however, are
the reasons why those particular solutions got employed.

AN AGENT-BASED SYSTEM FOR CAPTURING AND INDEXING SOFTWARE
DESIGN MEETINGS 3

 In response, we have created a system that allows software designers to
design agents naturally. The designers can draw UML-type free-hand
sketches on a whiteboard using an electronic marker whose “strokes” are
digital ink projected onto the board rather than drawn on it. These sketches
are recorded and interpreted in real-time to aid in the later retrieval of design
history. The system allows the users to design as they would naturally,
requiring only that they learn the UML syntax. Information extracted from
the diagrams can be used by the system to generate stub code, reducing
some of the routine part of the programming process. The recognition also
allows us to flag, label, and timestamp events as they occur, facilitating
retrieval of particular moments of the design history.
 Figure 1 is a photo of people who are designing agents in the Intelligent
Room. Figure 2 illustrates a free-hand sketch drawn by a designer.
 The system presented here is itself an Intelligent Room application
composed of a number of agents. The Design Meeting Agent extends the
Meeting Management System (Oh, Tuchinda, and Wu, 2001) for capture of
non-design information such as the structure of the design meeting. It
initializes the Tahuti Agent, which controls the sketch recognition and the
timestamping of significant events. It also controls the video and screen
capturing agents.
 In this paper we focus on the understanding, capture and retrieval of
design-related information. The paper begins by exploring the previous
work done in this area. Section 3 describes Metaglue, a multi-agent system.
Section 4 denotes the agent components involved in the system described
here. Section 5 provides further detail on the Tahuti Agent. Section 6
explains the algorithm for ranking significant sketch recognition events.
Section 7 defines the user interaction with the system thus far. Section 8
presents the current system use, future work, and contributions.

4 HAMMOND, GAJOS, DAVIS, AND SHROBE

Figure 1. People designing agents in the intelligent room

Figure 2. Sketch of Design Diagram

AN AGENT-BASED SYSTEM FOR CAPTURING AND INDEXING SOFTWARE
DESIGN MEETINGS 5

2. Previous Work

Much research has been done on indexing audio-visual material (Brunelli,
Mich, and Modena, 1996). Researchers have attempted to label the video
with salient features within the video itself, focusing on the recognition and
description of color, texture, shape, spatial location, regions of interest,
facial characteristics, and specifically for motion materials, video
segmentation, extraction of representative key frames, scene change
detection, extraction of specific objects and audio keywords.
 While not much research has been done using sketch recognition to label
and index a particular moment in video, a considerable body of work has
been done using sketch recognition to find a particular moment in a pre-
indexed video (Kato, Kurita, Otsu, and Hirata, 1992; Cho and Yoo, 1998;
Jacobs, FinkelStein, and Salesin, 1995).
 UML diagrams have been found lacking simple ways to describe agent-
based technologies (Odell, Parunak, and Bauer, 2000). Bergenti and Poggi
(2001) have created a CAD system to input UML diagrams for agent-based
systems. The system requires designers to enter their diagrams using a rigid
CAD interface rather than allowing designers to sketch as they would
naturally.

3. Metaglue and the Agent Architecture

This section describes Metaglue, the underlying software infrastructure that
the design meeting capture system presented in this paper is built upon.
Metaglue, a multi-agent system (MAS), is a foundation of all software
developed for the Intelligent Room Project. The rationale for choosing the
MAS approach to building software for smart spaces has been explained by
Coen (Coen, 1998) but the impact of the approach on our design meeting
capture application will be illustrated in this section.

The most important features of Metaglue are:
• Support for synchronous and asynchronous communication among

distributed agents. The synchronous method calls allow tight coupling
among closely collaborating agents that need to exchange large amounts
of information quickly. An example would include the central speech
recognition engine and the individual speech interface agents
controlling spoken interactions with various applications. When the
speech recognition engine recognizes a spoken utterance and determines
which agent is the intended recipient, it makes a direct method call to
that agent passing the information about the recognized phrase. In this
case there is only one intended recipient of the communication and
timing is critical. In contrast, when a hardware device changes its state,

6 HAMMOND, GAJOS, DAVIS, AND SHROBE

it sends out a state change notification through the publish-subscribe
mechanism. Varieties of meta agents may subscribe to this kind of
messages and trigger reactions or simply record the event for future
retrieval.

• Mechanisms for resource discovery and management (Gajos, 2001).
This feature allows agents to refer to one another by their capabilities
rather than location or name. For example, an email notification agent
may request a text message delivery service, regardless of how it is
provided. Depending on context and available resources, this service
can be provided by the text-to-speech agent, a scrolling LED sign or an
on-wall projected display. In some cases, the pager service might even
be used. This level of indirection frees the application creators from
having to anticipate or reason about the varying capabilities of different
physical environments. It also allows environments and their occupants
to exercise their personal preferences on how services are rendered. For
example, if the user is on the phone, the resource manager will favor
visual over audible renditions of the message delivery service.

Resource discovery and management services are critical for our project
as our software has been deployed in a number of very different spaces
such as offices, a conference room, a living room and a bedroom. All of
these spaces have very different intended uses and thus the kind, quality
and amount of equipment available in them differs dramatically.
Metaglue is also capable of arbitrating among conflicting requests from
numerous independent applications running in any given environment.

• Robust recovery mechanisms for failed components (Warshawsky,
2000). Metaglue adds an extra layer of indirection to all direct method
calls. It is used to detect any problems with the target object or the
communication channel. In cases where the remote object has failed,
Metaglue will attempt to restart it and retry the call before giving up.
This feature of Metaglue makes applications relatively immune to many
hardware and software failures while keeping the code of the
applications simple. Combined with the persistent storage capabilities
described below, this makes most of our agents “invincible.” Provided
they checkpoint their state frequently, in case of failure, the agents will
be automatically restarted and given a chance to reload their state before
continuing.

• Built-in persistent storage. Metaglue provides a convenient mechanism
for storing and retrieving arbitrary (serializable) objects. As mentioned
above, persistent storage is often used by agents to check point their
state. It is also used to store customization information and special
purpose application data. Our application is also using this mechanism

AN AGENT-BASED SYSTEM FOR CAPTURING AND INDEXING SOFTWARE
DESIGN MEETINGS 7

to store information about the meeting flow and the design process
(Peters 2002). Captured video and audio information are stored directly
to a disk location.

• Support for multimodal interactions through speech, gesture and
graphical user interfaces. Just as popular operating systems provide
mechanisms for communicating with users through standard input and
output mechanisms available on desktop computers, Metaglue provides
means for managing interactions through such channels as speech input
and output, distributed graphical interfaces, environmental displays,
simple sensors, and complex perception mechanisms based on computer
vision. In order to interact with users via speech, Metaglue-based
applications need only to provide a grammar describing a set of
expected utterances and a handler for speech input events (Coen,
Weisman, et al., 1999).

Perhaps the most important feature of Metaglue for the presented system is
the run-time composition of elements that comprise the full application
through the resource discovery and management system. That implies that
the core of the application comprises of just a few lightweight elements. All
of the remaining capabilities, such as capture, presentation and storage
resources, are obtained at run time from the environment. This allows our
system to be run in a variety of environments ranging from relatively
impoverished offices where only a single large display is available with no
cameras, to the original Intelligent Room lab equipped with 5 projectors,
multiple cameras, microphones, etc.

4. Components of the System

In this section we describe the major components of the system, including
the mandatory core components as well as the optional but desirable
services obtained from the surrounding environment. In the later parts of
the paper, where we describe interactions with the system, we will assume
that a full suite of desired resources is available. In other environments, the
interactions may be scaled down.

The core elements of our system are the Tahuti Agent and Design Meeting
Manager, which need to be always present as they manage the entire
application. The other components, such as communication, capture and
playback services, are dynamically discovered and incorporated into the
application based on their availability.

8 HAMMOND, GAJOS, DAVIS, AND SHROBE

Design Meeting Manager
The Design Meeting Manager extends our earlier Meeting Manager (Oh,
Tuchinda, and Wu, 2001). At startup, it is responsible for obtaining
resources necessary for running a basic meeting (a display for keeping track
of the agenda, issues, commitments, etc) and for starting Tahuti, the sketch
recognition part of the system. It is also responsible for negotiating with the
environment the use of available audio, video, and screen-capture devices.
During the meeting, the Design Meeting Manager, will keep track of the
organizational aspects of the meeting such as moving through and
augmenting the meeting agenda. It also provides means for querying
previous meetings.

Tahuti Agent
The Tahuti Agent is a white-board sketching application for UML based
design sketches. The application’s primary use is to aid in software design
meetings in the Intelligent Room. Since many of the applications designed
in the Intelligent Room are perceptually enabled agent based systems, we
have included symbols for specifying Agents and Speech Grammars. The
Tahuti Agent watches as people in the room write on the white board in the
room using, for example, a Mimeo mouse, which sends stroke data to the
Tahuti Agent. The Tahuti Agent recognizes UML diagrams as they are
sketched, and identifies and time-stamps events as they occur (see Section
6). These timestamps are used to index the video of the design meeting.

Speech Interfaces
Both the meeting manager and the Tahuti Agent can interact with the users
through speech. The grammar of the Design Meeting Manager contains
vocabulary for controlling the flow of the meeting and querying previous
meetings. Tahuti’s speech interface allows users to interact with the sketch
(e.g. provide feedback in case of misrecognition of drawn shapes) and to
query earlier designs (e.g. “What where we talking about when we added
this class?”).

Meeting Capture Services
There are a number of agents deployed in Metaglue-enabled spaces that can,
depending on the availability of hardware and software resources, provide
capture services to the Design Meeting Manager. In spaces equipped with
cameras, the video capture agent can capture video of the design meeting.
In most rooms, audio may also be captured by the audio capture agent.
Finally, if the sketching is done on a machine with appropriate software
(such as Camtasia), the sketching process can be captured directly from the
computer’s display. Ideally, all of those capabilities would be present. In

AN AGENT-BASED SYSTEM FOR CAPTURING AND INDEXING SOFTWARE
DESIGN MEETINGS 9

fact, when we run the system in our Intelligent Conference Room, we have
two cameras recording the progress of the meeting in addition to audio and
screen capture. As explained before, however, in some of the spaces, not all
of these services will be available. For example, in some spaces where
screen capture is not available, a similar service may be provided by a laser
pointer tracking camera that watches the projected display. The quality of
the recorded picture is not as good, but the content is still readable.
Conversely, when the system is ran in a standard Metaglue-equipped office,
no cameras are available and only audio and the screen get captured but not
the video of the interaction among the participants.

5. The Tahuti Agent: Sketching As The Main Design Medium

When designing new components for the Room, the designer can draw a
variety of symbols from UML notation, including class (rectangle), interface
(circle), interface association (line), dependency association (arrow),
inheritance association (arrow with triangle head), and aggregation
association (arrow with diamond head). She can also use special additional
symbols we have introduced: a double-edged rectangle to denote agents, and
a triangle (shown in the interpreted view as a triangle with an extended
bottom, or a pentagon, to fit more text) to denote grammars for speech-
enabled agents. These symbols simplify our diagrams by providing certain
syntactic shortcuts. In reality, an agent’s implementation is always
accompanied by an interface and the inheritance structure of interfaces
usually parallels that of agents (see Figure 3). In our sketches we omit the
interfaces. The interactions among agents involve a complex pattern of
proxy objects and helper classes, which we also omit in our sketches (Figure
4). Finally, reliance on a grammar always implies use of a special proxy
agent and interaction with Metaglue’s speech facilities (Figure 5).

10 HAMMOND, GAJOS, DAVIS, AND SHROBE

Figure 3. Each agent implements an interface with a corresponding name. If an
agent inherits from another agent, so do the interfaces of the agents (left figure). In

our sketches, the interfaces are assumed and not drawn (right figure).

Figure 4: The figure on the left displays the actual interaction between the two

classes. The figure on the right displays the abstraction for “relies on”.

AN AGENT-BASED SYSTEM FOR CAPTURING AND INDEXING SOFTWARE
DESIGN MEETINGS 11

Figure 5. The left shows the speech grammar along with connected classes. The
right shows the simper version with the grammar symbol implying the relationships

and agents on the left.

5.1. UNDERSTANDING SKETCHES
The sketches drawn during the design process are interpreted in real time,
e.g., rectangles are understood to indicate classes, etc. While drawing, the
designers can alternate between viewing their free-hand sketches, or their
interpreted drawings. Figure 6 shows the interpreted drawing of the design
in Figure 2. The interpreted drawing neatens the sketch if desired and
provides recognition feedback to the designer.

Figure 6. Interpretation of Sketch of Design in Figure 2 after Recognition

 The free-hand sketches can be edited because the diagrams are
interpreted. Classes, agents, speech grammars, and associations can be
moved or deleted while viewing either the free-hand sketch or the
interpreted structures. Drawn objects are deleted by scribbling them out.
When a class, agent, or grammar is moved, the original, as well as the
interpreted, strokes of the associations are stretched and skewed to remain
attached to the appropriate object. This is described further in Hammond
and Davis (2002).

12 HAMMOND, GAJOS, DAVIS, AND SHROBE

6. Documenting Important Stages in Design

6.1. TIMESTAMPING OF SIGNIFICANT EVENTS

In our system, all events in the design process are recorded, labeled, and
time stamped. A significant event is defined as the addition or deletion of a
general class, interface class, agent, grammar, or relationship. Less
significant events include the movement of a class, agent, grammar, or
association, or the addition, deletion, or editing of text, such as class,
method, or property names. During the development process, the designer
may also mark a particular event as particularly significant. The designer
can then later ask questions such as “What was the discussion when this
class was created?” and the system can show the appropriate section of
video and screen shots.

6.2. RANKING OF SIGNIFICANT EVENTS

Designers may also want to ask the more general question “How did we
design this system?” We would like to present to the designer a visual
description of how the scene evolved. We don’t want to show the designer
all of the significant events. Rather, we want to select a small number of
snapshots that when combined together can best display the evolution of the
design. We want to select the most significant events to show to the user,
and the most revealing snapshot related to those significant events.
Significant events are all given a rank, represented as a floating-point
number. The number before the decimal place is set according to the type of
event. For instance, creation of an Agent is given the highest rank of all
sketched objects, with a rank of 10. The table below lists the initial rank of
each of the possible events. While the numbers themselves are slightly
arbitrary, what is important is the relative ordering of the events.

• Final Design: 12
• User Marked Significant Event: 11
• Creation of an Existing Agent: 10
• Creation of an Existing General or Interface Class: 9
• Creation of an Existing Speech Grammar: 8
• Creation of an Existing Association: 7
• Creation of an Existing Unrecognized Stroke: 6
• Text Update: 5
• Movement: 4
• Creation of Deleted Object: 3
• Deletion of an Object: 2
• Undo/Redo: 1

AN AGENT-BASED SYSTEM FOR CAPTURING AND INDEXING SOFTWARE
DESIGN MEETINGS 13

 The logic behind the initial ranking is as follows. The final event is
always ranked the highest. The designer selected significant events outrank
computer selected significant events. Creation of viewable objects is
considered a more significant event than the updating or movement of that
object. Creations of objects that no longer exist in the final version are
considered to be much less significant than those that remained throughout
the entire process.
 Within a particular category (e.g., looking only at the Creation of Agent
Events), events are again ranked as more or less significant. Events that
affect more objects have a higher ranking. The fraction part of the floating-
point number is used to do further ranking. Events specifying the creation
of agents, classes, and grammars are further differentiated by the number of
associations attached to them. For instance, an agent connected by and
association by 4 classes would have a rank of 10.04 (since the number of
associations is divided by 100).
 A designer may want to see screenshots of the 5 most significant events
to get a brief history of the design process. When the most significant
events are chosen, the screenshot associated with the event is not the
snapshot of the time of the occurrence of that significant event, but rather
the snapshot of the moment before the next significant event. The next
significant event is defined to be the next event greater than or equal to the
lowest ranking in the listing of the most significant event. This allows any
smaller additions such as text or movement to be included in the snapshot.
Figure 7 shows ranking of each of the significant events of the diagram.
Figure 8a-c shows the three most significant events of a diagram.

14 HAMMOND, GAJOS, DAVIS, AND SHROBE

Figure 7: Each class, agent, association, and grammar is marked with a number
specifying its order drawn followed by its ranking. Note that the two with the

highest ranking are marked with stars.

Figure 8a: Significant Design Event 1, the screen shot significant event 4 (which

include significant event 5)

AN AGENT-BASED SYSTEM FOR CAPTURING AND INDEXING SOFTWARE
DESIGN MEETINGS 15

Figure 8b. Significant Design Event 2, after significant event 8 (which includes
significant event 15)

16 HAMMOND, GAJOS, DAVIS, AND SHROBE

Figure 8c. Significant Design Event 3, the final diagram

7. Conclusions

7.1 CURRENT SYSTEM USE

The Tahuti stand-alone agent has been tested and used by over sixty users.
It has been deployed for use in teaching object oriented programming in
four computer science classrooms at Columbia University. The Metaglue
technology described in this paper has also been deployed for several years
at several locations and is widely used by the large number of people at the
MIT AI Laboratory who use the Intelligent Room daily (about 50 users per
day). Thus far, we are still in the testing phase of our system and only
experimental users have used the system, but we anticipate a positive
reaction to the new system.

AN AGENT-BASED SYSTEM FOR CAPTURING AND INDEXING SOFTWARE
DESIGN MEETINGS 17

7.2 FUTURE WORK

In the future, we plan to increase the number of sketchable shapes in our
domain to include those in flow chart diagrams and UML sequence
diagrams. Designers would then be able to create more semantically rich
sketches.

7.3 CONTRIBUTIONS

We present an agent-based system for capturing and indexing software
design meetings. Design meeting history is captured using available audio,
video, and screen capture services in the environment. Tahuti, a sketch
recognition agent, recognizes UML-type sketches drawn during the software
design meeting and produces significant events based on the sketches
drawn. These events are then used to index the videos and audiotapes for
fast retrieval of specific information. The system is composed of multiple
agents and runs in Metaglue, a multi-agent software infrastructure that
provides for seamless multi-modal interaction between the various agents of
the system as well as the users.

Acknowledgements

This work is supported by Acer Inc., Delta Electronics Inc., HP Corp., NTT
Inc., Nokia Research Center, and Philips Research under the MIT Project
Oxygen partnership and by DARPA through the Office of Naval Research
under contract number N66001-99-2-891702.

References

Bergenti, F and Poggi A: 2001, Agent-oriented Software Construction with UML, Handbook
of Software Engineering and Knowledge Engineering, Vol 2.

Brunelli, R and Mich, O and Modena CM: 1996, A Survey on Video Indexing, IRST
Technical Report.

Cho, SJ and Yoo, SI: 1998, Image Retrieval Using Topological Structure of User Sketch,
Proceedings of IEEE SMC98.

Coen, M: 1998, Design Principles for Intelligent Environments. Proceedings of AAAI'98.
Madison, WI, 1998.

Coen, M and Phillips, B and Warshawsky, N and Weisman, L and Peters, S and Finin, P:
1999, Meeting the Computational Needs of Intelligent Environments: The Metaglue
System. Proceedings of MANSE'99, Dublin, Ireland.

Coen, M and Weisman, L and Thomas, K and Groh, M: 1999, A Context Sensitive Natural
Language Modality for the Intelligent Room. Proceedings of MANSE'99. Dublin, Ireland.

Gajos, K: 1999, Rascal - a Resource Manager For Multi Agent Systems In Smart Spaces.
Proceedings of CEEMAS'01, Cracow, Poland. Also available in LNAI 2296.

18 HAMMOND, GAJOS, DAVIS, AND SHROBE

Hammond, TA and Davis, R: 2002, Tahuti: A Geometrical Sketch Recognition System for
UML Class Diagrams, Proceedings of the 2002 AAAI Spring Symposium on Sketch
Understanding, pp. 59-66.

Hanssens, N and Kulkarni, A and Tuchinda, R and Horton, T: 2002, Building Agent-Based
Intelligent Workspaces. Proceedings of The International Workshop on Agents for
Business Automation. Las Vegas, NV.

Jacobs, C and Finkelstein A, and Salesin D: 1995, Fast Multiresolution Image Querying,
Computer Graphics, Annual Conference Series (Siggraph ’95 Proceedings), pp. 277-286.

Kato, T and Kurita, T and Otsu, N and Hirata, K: 1992, A Sketch Retrieval Method for Full
Color Image Databases – Query by Visual Example. 11th IAPA International Conference
on Pattern Recognition, IEEE Computer Society Press, The Hague, The Netherlands, pp.
530-533.

Louridas, P and Loucopoulos, P: 2000, A Generic Model for Reflective Design. ACM
Transactions on Software Engineering and Methodology (TOSEM), New York, NY.

Moran, TP and Carroll, JM: 1996, Overview of Design Rational, Design Rationale: Concepts,
Techniques, and Use, TP Moran and JM Carroll, Eds. LEA Computers, Cognition, and
Work-Series, Lawrence Erlbaum Associates, Inc., Mahwah, NJ, 1-19.

Odell, J and Parunak HVD and Bauer B: 2000, Extending UML for Agents, AOIS Workshop
at AAAI.

Oh, A and Tuchinda, R and Wu, L: 2001, MeetingManager: A Collaborative Tool in the
Intelligent Room. Student Oxygen Workshop, Cambridge, MA.

Peters, S: 2002, Using Semantic Networks for Knowledge Representation in an Intelligent
Environment. In Submission.

Shipman, FM and McCall RJ: 1997, Integrating Different Perspectives on Design Rationale:
Supporting the Emergence of Design Rationale from Design Communication, Artificial
Intelligence in Engineering Design, Analysis, and Manufacturing (AIEDAM), 11(2): 141-
154.

Shum, SJB and MacLean, A and Bellotti, VME and Hammond, NV: 1996, Graphical
Argumentation and Design Cognition, Human-Computer Interaction, 12(3): 267-300.

Warshawsky, N: 1999, Extending the Metaglue Multi Agent System. M.Eng. Thesis. MIT,
Cambridge, MA.

