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Abstract
An ideal crowdsourcing or citizen-science system would
route tasks to the most appropriate workers, but the best as-
signment is unclear because workers have varying skill, tasks
have varying difficulty, and assigning several workers to a
single task may significantly improve output quality. This
paper defines a space of task routing problems, proves that
even the simplest is NP-hard, and develops several approx-
imation algorithms for parallel routing problems. We show
that an intuitive class of requesters’ utility functions is sub-
modular, which lets us provide iterative methods for dynami-
cally allocating batches of tasks that make near-optimal use of
available workers in each round. Experiments with live oDesk
workers show that our task routing algorithm uses only 48%
of the human labor compared to the commonly used round-
robin strategy. Further, we provide versions of our task rout-
ing algorithm which enable it to scale to large numbers of
workers and questions and to handle workers with variable
response times while still providing significant benefit over
common baselines.

Introduction
While there are millions of workers present and thousands of
tasks available on crowdsourcing platforms today, the prob-
lem of effectively matching the two, known as task routing,
remains a critical open question. Law & von Ahn (2011)
describe two modes of solving this problem – the pull and
the push modes. In the pull mode, such as on Amazon Me-
chanical Turk (AMT), workers themselves select tasks based
on price, keywords, etc. In contrast, a push-oriented labor
market, popular on volunteer crowdsourcing platforms (e.g.,
Zooniverse (Lintott et al. 2008)), directly allocates appropri-
ate tasks to workers as they arrive. Increasing amounts of
historical data about tasks and workers create the potential
to greatly improve this assignment process. For example, a
crowdsourcing system might give easy tasks to novice work-
ers and route difficult problems to experts.

Unfortunately, this potential is hard to realize. Exis-
ting task routing algorithms (e.g., (Donmez, Carbonell,
and Schneider 2009; Wauthier and Jordan 2011; Ho and
Vaughan 2012; Chen, Lin, and Zhou 2013)) make too re-
strictive assumptions to be applied to realistic crowdsourc-
ing platforms. For example, they typically assume at least
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one of the following simplifications: (1) tasks can be allo-
cated purely sequentially, (2) workers are willing to wait
patiently for a task to be assigned, or (3) the quality of a
worker’s output can be evaluated instantaneously. In con-
trast, an ideal practical task router should be completely un-
supervised, since labeling gold data is expensive. Further-
more, it must assign tasks in parallel to all available work-
ers, since making engaged workers wait for assignments
leads to an inefficient platform and frustrated workers. Fi-
nally, the task router should operate in real-time so that
workers need not wait. The two latter aspects are especially
important in citizen science and other forms of volunteer
(non-economically motivated) crowdsourcing.

In this paper we investigate algorithms for task routing
that satisfy these desiderata. We study a setting, called JOCR
(Joint Crowdsourcing (Kolobov, Mausam, and Weld 2013)),
in which the tasks are questions, possibly with varying dif-
ficulties. We assume that the router has access to a (possi-
bly changing) set of workers with different levels of skill.
The system keeps each available worker busy as long as the
worker stays online by assigning him or her questions from
the pool. It observes responses from the workers that com-
plete their tasks and can aggregate their votes using majority
vote or more sophisticated Bayesian methods in order to es-
timate its confidence in answers to the assigned questions.
The system’s objective is to answer all questions from the
pool as accurately as possible after a fixed number of allo-
cations.

Even within this setting, various versions of the prob-
lem are possible depending upon the amount of informa-
tion available to the system (Figure 1). In this paper we fo-
cus on the case where task difficulties and worker abilities
are known a priori. Not only does this setting lay a foun-
dation for the other cases, but it is of immediate practical
use. Recently developed community-based aggregation can
learn very accurate estimates of worker accuracy from lim-
ited interactions (Venanzi et al. 2014). Also, for a wide range
of problems, there are domain-specific features that allow a
system to roughly predict the difficulty of a task.

We develop algorithms for both offline and adaptive JOCR
task routing problems. For the offline setting, we first prove
that the problem is NP hard. Our approximation algorithm,
JUGGLEROFF, is based on the realization that a natu-
ral objective function for this problem, expected informa-
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Figure 1: The space of allocation problems.

tion gain, is submodular. This allows JUGGLEROFF to
efficiently obtain a near-optimal allocation. We use simi-
lar ideas to devise an algorithm called JUGGLERAD for
the adaptive problem, which achieves even better empirical
performance. JUGGLERBIN is an approximate version of
JUGGLERAD, which is able to scale to large numbers of
workers and tasks in an efficient manner. Finally, we present
JUGGLERRT, which handles workers who take different
amounts of time to complete tasks.

We test our algorithms both in simulation and using real
data. Experiments with live oDesk workers on a natural lan-
guage named entity linking task show that JUGGLERAD’s
allocation approach achieves the same accuracy as the com-
monly used round-robin strategy, using only 48% of the la-
bor. Additional experiments on simulated data show that (1)
our adaptive method significantly outperforms offline rout-
ing, (2) the adaptivity’s savings grow when worker skills and
task difficulties are more varied, (3) our binned (approxi-
mate) adaptive algorithm provides scalability without com-
promising performance, and (4) our approach yields signifi-
cant savings even when worker response times vary.

Problem Definition
In our JOCR model, we posit a set of workersW and a set of
questionsQ. Each question q ∈ Q has a (possibly latent) dif-
ficulty dq ∈ [0, 1], and each worker w ∈ W has a (possibly
latent) skill parameter γw ∈ (0,∞). While more complex
models are possible, ours has the advantage that it is learn-
able even with small amounts of data. We assume that the
probability of a worker w providing a correct answer to a
question q is a monotonically increasing function P (dq, γw)
of worker skill and a monotonically decreasing function of
question difficulty. For example, one possible such function,
adapted from (Dai, Mausam, and Weld 2010), is

P (dq, γw) =
1

2
(1 + (1− dq)

1
γw ). (1)

We assume that JOCR algorithms will have access to a
pool of workers, and will be asking workers from the pool
to provide answers to the set of questions submitted by a
requester. This pool is a subset of W consisting of work-
ers available at a given time. The pool need not be static
— workers may come and go as they please. To formal-
ize the problem, however, we assume that workers disappear

or reappear at regularly spaced points in time, separated by
a duration equal to the time it takes a worker to answer a
question. We call each such a decision point a round. At the
beginning of every round t, our algorithms will assign ques-
tions to the pool Pt ⊆ W of workers available for that round,
and collect their responses at the round’s end.

The algorithms will attempt to assign questions to work-
ers so as to maximize some utility over a fixed number of
rounds, a time horizon, denoted as T . Since we focus on
volunteer crowdsourcing platforms, in our model asking a
worker a question incurs no monetary cost. To keep work-
ers engaged and get the most questions answered, our tech-
niques assign a question to every worker in pool Pt in ev-
ery round t = 1, . . . , T . An alternative model, useful on a
shared citizen-science platform would allow the routing al-
gorithm a fixed budget of nworker requests over an arbitrary
horizon.

Optimization Criteria
The JOCR framework allows the use of various utility func-
tions U(S) to optimize for, where S ∈ 2Q×W denotes
an assignment of questions to workers. One natural util-
ity function choice is the expected information gain from
observing a set of worker responses. Specifically, let A =
{A1, A2, . . . , A|Q|} denote the set of random variables over
correct answers to questions, and let X = {Xq,w | q ∈
Q ∧ w ∈ W} be the set of random variables correspond-
ing to possible worker responses. Further, let XS denote the
subset of X corresponding to assignment S. We can quan-
tify the uncertainty in our predictions for A using the joint
entropy

H(A) = −
∑

a∈domA

P (a) logP (a),

where the domain of A consists of all possible assignments
to the variables in A, and a denotes a vector representing
one assignment. The conditional entropy

H(A | XS) = −
∑

a ∈ domA,
x ∈ domXS

P (a,x) logP (a | x)

represents the expected uncertainty in the predictions after
observing worker votes corresponding to the variables in
XS . Following earlier work (Whitehill et al. 2009), we as-
sume that questions are independent (assuming known pa-
rameters) and that worker votes are independent given the
true answer to a question, i.e.,

P (a,x) =
∏
q∈Q

P (aq)
∏

w∈W who answered q

P (xq,w | aq),

where P (xq,w | aq) depends on worker skill and question
difficulty as in Equation 1. We can now define the value of a
task-to-worker assignment as the expected reduction in en-
tropy

UIG(S) = H(A)−H(A | XS). (2)



Problem Dimensions
Given the information gain maximization objective, we con-
sider the problem of finding such an assignment under com-
binations of assumptions lying along three dimensions (Fig-
ure 1):

• Offline vs. online (adaptive) assignment construction.
In the offline (or static) mode, a complete assignment of
T questions to each worker is chosen once, before the be-
ginning of the first round, and is not changed as workers
provide their responses. Offline assignment construction
is the only available option when workers’ responses can-
not be collected in real time. While we provide an algo-
rithm for the offline case, JUGGLEROFF, it is not our
main focus. Indeed, worker responses typically are avail-
able immediately after workers provide them, and taking
them into account allows the router to resolve worker dis-
agreements on the fly. Our experimental results confirm
this, with adaptive JUGGLERAD outperforming the of-
fline algorithm as well as our baselines.

• Sequential vs. parallel hiring of workers. A central
question in online allocation is the number of workers to
hire in a given round. If one could only hire n workers in
total, an optimal strategy would ask workers sequentially,
one worker per round, because this allows the maximum
use of information when building the rest of the assign-
ment. However, this strategy is impractical in most con-
texts, especially in citizen science — using just a single
worker wastes the time of the majority and demotivates
them. Therefore, in this paper we consider the harder case
of parallel allocation of questions to a set of workers. In
our case, this set comprises all workers available at the
moment of allocation.

• Known vs. latent worker skill and question difficulty.
Worker skill and question difficulty are critical for match-
ing tasks with workers. Intuitively, the optimal way to
use skillful workers is to give them the most difficult
tasks, leaving easier ones to the less proficient mem-
bers of the pool. In this paper, we assume these quanti-
ties are known — a reasonable assumption in practice.
Since workers and requesters often develop a long-term
relationships, EM-based learning (Whitehill et al. 2009;
Welinder et al. 2010) can estimate worker accuracy from
a surprisingly short record using community-based aggre-
gation (Venanzi et al. 2014).
Similarly, domain-specific features often allow a system
to estimate a task’s difficulty. For example, the linguis-
tic problem of determining whether two nouns corefer is
typically easy in the case of apposition, but harder when
a pronoun is distant from the target (Stoyanov et al. 2009;
Raghunathan et al. 2010). In the citizen science domain,
detecting planet transits (the focus of the Zooniverse
project Planet Hunters) is more difficult for planets that
are fast-moving, small, or in front of large stars (Mao et
al. 2013).
If skill or difficulty is not known, the router faces a chal-
lenging exploration/exploitation tradeoff. For example, it
gains information about a worker’s skill by asking a ques-

tion for which it is confident of the answer, but of course
this precludes asking a question whose answer it does not
know.

Offline Allocation
We first address the simplest form of the allocation problem,
since its solution (and complexity) forms a basis for subse-
quent, more powerful algorithms. Suppose that an agent is
able to assign tasks to a pool of workers, but unable to ob-
serve worker responses until they have all been received and
hence has no way to reallocate questions based on worker
disagreement. We assume that the agent has at its disposal
an estimate of question difficulties and worker skills, as dis-
cussed above.

Theorem 1. Finding an assignment of workers to questions
that maximizes an arbitrary utility function U(S) is NP-
hard.

Proof sketch. We prove the result via a reduction from the
Partition Problem to offline JOCR. An instance of this prob-
lem is specified by a set X containing n elements and
a function s : X → Z+. The Partition Problem asks
whether we can divide X into two subsets X1 and X2 s.t.∑

x∈X1
s(x) =

∑
x∈X2

s(x).
We construct an instance of offline JOCR to solve an in-

stance of the Partition Problem as follows. For each element
xi ∈ X , we define a corresponding worker wi ∈ W with
skill γi = s(xi)/maxxi∈X s(xi), and let the horizon equal
1. We also define two questions, q1 and q2, with the same
difficulty d. Let Sq,w be an indicator variable that takes a
value of 1 iff worker w has been assigned question q. Let
f(S, q) = log [

∑
w Sq,wγw + 1] and define the utility func-

tion as U(S) =
∑

q f(S, q).

The solution to a Partition Problem instance is true iff
f(S, q1) = f(S, q2) for an optimal solution S to the cor-
responding JOCR problem constructed above.
⇒: Suppose that there exist subsets of X , X1 and X2, such
that the sum of elements in the two sets are equal. Further,
suppose for contradiction that the optimal solution S from
JOCR assigns sets of workers with different sums of skills
to work on the two questions. Then we can improve U(S)
by making sum of skills equal (by monotonicity and sub-
modularity of logarithm), implying that S was suboptimal,
leading to a contradiction.
⇐: Suppose that S is an optimal solution to the JOCR prob-
lem s.t. f(S, q1) = f(S, q2). Then sums of worker skills
(multiplied by the maximum worker skill) for each ques-
tion are equal and the solution to the Partition Problem is
true.

Given the intractability of this problem, we next devise
approximation methods. Before proceeding further, we
review the combinatorial concept of submodularity. A func-
tion f : 2N → R is submodular if for every A ⊆ B ⊆ N
and e ∈ N : f(A∪{e})−f(A) ≥ f(B∪{e})−f(B). Fur-
ther, f is monotone if for everyA ⊆ B ⊆ N : f(A) ≤ f(B).
Intuitively, this is a diminishing returns property; a function
is submodular if the marginal value of adding a particular



element never increases as other elements are added to a set.

Theorem 2. The utility function UIG(S) based on value of
information defined in the previous section is monotone sub-
modular in S, provided that worker skill and question diffi-
culty are known.

Proof sketch. Given worker skill, question difficulty, and the
true answers, worker ballots are independent. We can use
the methods of (Krause and Guestrin 2005) to show that ex-
pected information gain UIG(S) is submodular and nonde-
creasing.

Since the utility function UIG(S) is monotone submodu-
lar, we naturally turn to approximation algorithms. Our opti-
mization problem is constrained by the horizon T , meaning
that we may not assign more than T questions to any worker.
We encode this constraint as a partition matroid. Matroids
capture the notion of linear independence in vector spaces
and are specified as M = (N , I), where N is the ground
set and I ∈ 2N are the subsets of elements in N that are
independent in the matroid. A partition matroid is specified
with an additional constraint. If we partition N = Q ×W
into disjoint sets Bw = {w}×Q corresponding to the set of
possible assignments for each worker w, we can construct
the desired partition matroid by defining an independent set
to include no more than T elements from each of these sets.

JUGGLEROFF uses the greedy selection process shown
in Algorithm 1, which is guaranteed to provide a 1/2-
approximation for monotone submodular optimization with
a matroid constraint (Nemhauser, Wolsey, and Fisher 1978),
yielding the following theorem:

Theorem 3. Let S∗ be a question-to-worker assignment
with the highest information gain UIG, and let S be
the assignment found by maximizing UIG greedily. Then
UIG(S) ≥ 1

2UIG(S∗).

JUGGLEROFF improves efficiency by making assignments
separately for each worker (exploiting the fact that Equa-
tion 1 is monotonically increasing in worker skill) and by us-
ing lazy submodular evaluation (Krause and Golovin 2014).
Interestingly, while the greedy algorithm dictates selecting
workers in order of descending skill in Algorithm 1, we ob-
serve drastic improvement in our empirical results from se-
lecting workers in reverse order; our implementation sorts
by increasing worker skill, which prioritizes assigning eas-
ier questions to the less-skilled workers. We have simpli-
fied the utility computation of ∆X by observing that en-
tropy decomposes by question in our model. We note that
more involved algorithms can improve the theoretical guar-
antee to (1 − 1/e) (Vondrak 2008; Filmus and Ward 2012;
Badanidiyuru and Vondrak 2014), but given the large pos-
itive effect of simply reversing the order of workers, it is
unlikely that these methods will provide significant benefit.

Since we are motivated by the citizen science scenario,
we have not included cost in the agent’s utility function.
However, we note that our utility function remains submod-
ular (but not longer monotone) with the addition of a linear

Algorithm 1 The JUGGLEROFF algorithm
Input: WorkersW , prior P (a) over answers, unobserved
votes XR, horizon T , initial assignment S
Output: Final assignment S of questions to workers
for w in sorted(W, key = γw) do

for i = 1 to T do
Xw ← {Xq,w′ ∈ XR | w′ = w}
for Xq,w ∈ Xw do

∆X ← H(Aq | x)−H(Aq | Xq,w,S,x)
end for
X∗ ← arg max{∆X : X ∈ Xw}
Set S ← S ∪ {X∗} and XR ← XR \ {X∗}

end for
end for

cost term. Thus, one can formulate the optimization prob-
lem as non-monotone submodular optimization, for which
algorithms exist.

Adaptive (Online) Allocation
JUGGLEROFF performs a complete static allocation and
does not adapt based on worker response. However, in most
crowdsourcing platforms, we have access to intermediate
output after each worker completes her attempt on a ques-
tion; it makes sense to consider all previous responses dur-
ing each round, when assigning tasks. Intuitively, the router
may choose to allocate more workers to a question, even if
easy, that has generated disagreement. In this section we de-
scribe our algorithms for the adaptive setting. We believe
that these are the first adaptive task allocation algorithms for
crowdsourcing to engage all available workers at each time
step.

Unlike in the offline setting, the objective of an optimal al-
gorithm for the online setting is to compute an adaptive way
of constructing assignment, not any fixed assignment per se.
Formally, this problem can be seen as a Partially Observable
Markov Decision Process (POMDP) with a single (hidden)
state representing the set of answers to all questions q ∈ Q.
In each round t, the available actions correspond to possible
allocations St ∈ 2Q×Pt of tasks to all workers in the pool
Pt ⊆ W s.t. each worker gets assigned only one task, the
observations are worker responses XSt , and the total plan-
ning horizon is T . The optimal solution to this POMDP is a
policy π∗ that satisfies, for each round t and the set of obser-
vations ∪t−1i=1xi received in all rounds up to t,

π∗(

t⋃
i=1

xi) = argmaxπE

[
U(

H⋃
j=t

{Sj ∼ π(
t−1⋃
i=1

xi,

j−1⋃
i=t

Xi))}

]

Existing methods for solving POMDPs apply almost ex-
clusively to linear additive utility functions U and are in-
tractable even in those cases, because the number of actions
(allocations) in each round is exponential. Besides, since
workers can come and go, the POMDP’s action set keeps
changing, and standard POMDP approaches do not handle
this complication.



Algorithm 2 The JUGGLERAD algorithm
Input: WorkersW , prior P (a) over answers, unobserved
votes XR, horizon T
x← ∅
for t = 1 to T do

St ← call JUGGLEROFF(T = 1, S = ∅)
Observe xSt and set x← x ∪ xSt
XR ← XR \ St

Update prior as P (a | x)
end for

Instead, we use a replanning approach, JUGGLERAD
(Algorithm 2), that uses the information gain utility UIG
(Equation 2). JUGGLERAD allocates tasks by maximiz-
ing this utility in each round separately given the observa-
tions so far, modifies its beliefs based on worker responses,
and repeats the process for subsequent rounds. In this case,
the allocation for a single round is simply the offline prob-
lem from the previous section with a horizon of 1. Thus,
JUGGLERAD uses JUGGLEROFF as a subcomponent at
each allocation step.

Although we can prove theoretical guarantees for the
offline problem (and therefore for the problem of making
an assignment in each round), it is more difficult to provide
guarantees for the T -horizon adaptive allocation. A natural
analysis approach is to use adaptive submodularity (Golovin
and Krause 2011), which generalizes performance guaran-
tees of the greedy algorithm for submodular optimization
to adaptive planning. Intuitively, a function f is adaptive
submodular with respect to probability distribution p if the
conditional expected marginal benefit of any fixed item
does not increase as more items are selected and their states
are observed. Unfortunately, we have the following negative
result.

Theorem 4. The utility function UIG(S) based on the value
of information is not adaptive submodular even when ques-
tion difficulties and worker abilities are known.

Proof. In order for U(S) to be adaptive submodular, the
conditional expected marginal benefit of a worker response
should never decrease upon making more observations. As a
counterexample, suppose we have one binary question with
difficulty d = 0.5 and two workers with skills γ1 = 1
and γ2 → ∞. If the prior probability of the answer is
P (A = True) = 0.5, the expected information gain
H(A) − H(A | X2) of asking for a vote from the second
worker is initially one bit, since she will always give the
correct answer. However, if we observe a vote from the first
worker before asking for a vote from the second worker, the
expected information gain for the second worker will be less
than one bit since the posterior probability P (A = True)
has changed.

While we are unable to prove theoretical bounds on the
quality of the adaptive policy in the absence of adaptive
submodularity, our experiments in the next section show

that JUGGLERAD uses dramatically less human labor than
commonly-used baseline algorithms.

Scalability
Assigning at Most One Worker at a Time to a Task As
an adaptive scheduler, JUGGLERAD must perform alloca-
tions quickly for all available workers, so that workers do
not abandon the system due to high latency. Computing the
incremental value of assigning a worker to a question in a
given round is normally very fast, but can become compu-
tationally intensive if the system has already assigned many
other workers to that question in that round (and has not yet
observed their responses). Such a computation requires tak-
ing an expectation over a combinatorial number of possible
outcomes for this set of votes.

This computational challenge may lead one to wonder
whether it is beneficial to restrict the router to assigning each
question to at most one worker in every round. With this re-
striction in place, finding a question-to-worker assignment
in a given round amounts to constructing a maximum-weight
matching in the bipartite graph of questions and available
workers (where edge weights give the expected utility gain
from the corresponding assignment). This problem looks
simpler than what we have discussed above; in fact, theo-
retically, it is solvable optimally in polynomial time. More-
over, the aforementioned restriction should be moot in prac-
tice, because large crowdsourcing systems typically have
many more tasks to complete than available workers (i.e.,
|W| � |Q|). Intuitively, in such scenarios a scheduling al-
gorithm has some flexibility with regard to the exact round
in which it schedules any particular task, and hence is rarely
forced to allocate a question to several workers in a round.

Experiments presented later in the paper confirm the in-
tuition that the restriction of one worker per question realis-
tically has little impact on the solution quality. We find that
assigning multiple workers to a task in a round was ben-
eficial only when the fraction of workers to tasks was at
least 1/4. Nonetheless, we have discovered that optimally
computing maximum matching is still very intensive com-
putationally. Fortunately, our tests also suggest a cheaper
alternative — greedily constructing an approximation of a
maximum matching. Doing so (1) does not hurt the solution
quality of JUGGLERAD, implying that our greedy algo-
rithm finds a solution that is close to optimal, and (2) despite
being in the same theoretical complexity class as the algo-
rithm for finding an exact optimal matching, is much faster
in practice, making it more appropriate for the large-scale
setting. For these reasons, we do not discuss the exact max-
imum matching approach further, concentrating instead on
the greedy approximate strategy.

Binning Questions for Faster Performance When scal-
ing to large numbers of workers and questions, even a greedy
strategy that never assigns more than one worker to a task at
a time can be prohibitively expensive, as it requires mak-
ing O(|Q|) utility computations per worker in each round.
However, since the utility of an assignment is a function of
the current belief about the true answer, as well as of the
question difficulty and worker skill, we can reduce the com-



Algorithm 3 The JUGGLERBIN algorithm
Input: WorkersW , prior P (a) over answers, unobserved
votes XR, horizon T
function LOAD(Qin)

for w inW do
for q in Qin do

if xq,w /∈ x then
b← TO BIN(dq, P (aq | x))
bins[w][b].add(q)

end if
end for

end for
end function

# Initialize bins
bins← {}
for w inW do

bins[w]← {}
for b in ENUMERATE BINS() do

bins[w][b]← ∅
q′ ← temp question with d, P (a) for bin
∆Xb,w ← H(Aq′)−H(Aq′ | Xq′,w)

end for
end for
LOAD(Q)

# Make assignments
x← ∅
for t = 1 to T do

S ← ∅
for w in sorted(W, key = γw) do

for b in sorted(bins[w], key = ∆Xb,w) do
if bins[w][b] 6= ∅ then

q ← bins[w][b].pop()
S ← S ∪ {Xq,w}
for w′ inW \ {w} do

bins[w′][b].remove(q)
end for
Break and move to next w

end if
end for

end for
Observe xS and set x← x ∪ xS

XR ← XR \ S
Update prior as P (a | x)
LOAD({q for xq,w in xS)}

end for

plexity by partitioning assignments into bins.
JUGGLERBIN (Algorithm 3) is an approximate version

of JUGGLERAD, which makes uses of binning in order
to reduce the cost of making an assignment to O(|W|2 +
|W|C2), where C is user-specified parameter for the num-
ber of partitions. JUGGLERBIN uses C2 bins representing
the cross product of C question difficulty partitions and C
belief partitions (evenly-spaced on the interval from 0 to 1).
During initialization, the system sorts bins from highest to
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Figure 2: Visualization of the IG-based utility of asking
questions of (a) a low-skilled worker (γ = 0.71) and (b)
a high-skilled worker (γ = 5.0), as a function of ques-
tion difficulty and current belief. Darker color indicates
higher expected utility. (Bin-size corresponds to running
JUGGLERBIN with C = 21.)

lowest utility for each worker (computed using the mean
question difficulty and belief for the bin, assuming a uni-
form distribution of questions). For each worker, the sys-
tem maintains a hash from each bin to a set of unanswered
questions whose difficulty and current belief fall within the
bin boundaries — and which are not currently being an-
swered by another worker. The system makes an assignment
by popping a question from the nonempty bin with high-
est utility. JUGGLERBIN approximates the performance
of JUGGLERAD arbitrarily closely as the parameter C in-
creases, and can scale independently of the total number of
questions since it does not need to consider all questions in
each round.

Note that the order in which JUGGLERBIN visits bins
is not the same for all workers, and depends on a particular
worker’s skill. Figure 2 shows, for instance, that it may be
more valuable to ask a high-skilled worker a difficult ques-
tion we know little about (belief close to 0.5) than an easy
question whose answer is quite certain (belief close to 0
or 1), but same statement might not hold for a low-skilled
worker.

Variable Worker Response Times
Up to this point, we have assumed that each worker com-
pletes his assignment in each round. In practice, however,
workers take different amounts of time to respond to ques-
tions, and a task router must either force some workers to
wait until others finish or make new assignments to subsets
of workers as they finish. JUGGLERRT described in Algo-
rithm 4, performs the latter service by maintaining a record
of outstanding assignments in order to route the most useful
new tasks to available workers.

Experiments
We seek to answer the following questions: (1) How well
does our adaptive approach perform in practice? We answer
this question by asking oDesk workers to perform a chal-
lenging NLP task called named entity linking (NEL) (Min
and Grishman 2012). (2) How much benefit do we derive



Algorithm 4 The JUGGLERRT algorithm
Input: WorkersW , prior P (a) over answers, unobserved
votes XR, horizon T
x← ∅
Sbusy ← ∅
for t = 1 to T do

St ← call JUGGLEROFF(T = 1, S = Sbusy)
Snew ← St \ Sbusy and assign Snew

Sdone ← retrieve completed assignments
Sbusy ← (Sbusy ∪ Snew) \ Sdone

Observe xSdone and set x← x ∪ xSdone
XR ← XR \ Snew

Update prior as P (a | x)
end for

from an adaptive approach, compared to our offline alloca-
tion algorithm? We answer this question by looking at av-
erage performance over many experiments with simulated
data. (3) How much does our adaptive approach benefit
from variations in worker skill or problem difficulty? We
answer this question through simulations using different dis-
tributions for skill and difficulty. (4) Finally, how well does
our approach scale to many workers and tasks? We answer
this question by first evaluating our strategy of limiting one
worker per task per round, and then evaluating how speed
gains from binning impact the quality of results.

Benchmarks
To evaluate the performance of our adaptive strategy, we
compare its implementation in the information gain-based
JUGGLERAD to a series of increasingly powerful alterna-
tives, some of which are also variants of JUGGLER:

• Random (Ra). The random strategy simply assigns each
worker a random question in each round.

• Round robin (RR). The round robin strategy orders the
questions by the number of votes they got so far, and in
each round iteratively assigns each worker a random ques-
tion with the fewest votes.

• Uncertainty-based (Unc). The uncertainty-based policy
orders workers from the least to most skilled 1 and in each
round iteratively matches the least skilled yet-unassigned
worker to the unassigned question with the highest la-
bel uncertainty, measured by the entropy of the poste-
rior distribution over the labels already received for that
question. Note that this strategy differs from our imple-
mentation of the information gain-based JUGGLERAD
in just two ways: (a) it never assigns two workers to the
same question in the same round and (b) it ignores ques-
tion difficulty when performing the assignment, thereby
computing a difficulty-oblivious version of information
gain. Thus, the uncertainty-based strategy can be viewed
as a simpler version of JUGGLERAD and is expected to
perform similarly to JUGGLERAD if all questions have
roughly the same difficulty.
1For consistency with other approaches (we did not observe a

significant ordering effect).

• Accuracy gain-based (AG). This policy is identical to
the information gain-based JUGGLERAD, but in every
round greedily optimizes expected accuracy gain instead,
i.e., seeks to find a single-round question-to-worker as-
signment S that maximizes

E

∑
q∈Q

max
aq

(P (aq | XS), 1− P (aq | XS))

 .
Unlike information gain, accuracy gain is not submodu-
lar, so the worker allocation procedure that maximizes it
greedily does not have a constant error bound even within
a single allocation round. Nonetheless, intuitively it is a
powerful heuristic that provides a reasonable alternative
to information gain in the JUGGLER framework.

In the next subsections, we denote the information gain-
based JUGGLERAD as IG for ease of comparison with the
other benchmarks. While the random and round robin strate-
gies a-priori look weaker than IG, the relative qualitative
strength of the other two is not immediately clear and pro-
vides important insights into IG’s practical operation.

In the experiments that follow, we initially force all
benchmarks and IG itself to assign questions that have not
yet been assigned, until each question has been asked once,
before proceeding normally. This ensures that all predictions
are founded on at least one observation and provides empir-
ical benefits.

Comparison of Adaptive Strategies
In order to measure performance with real workers and
tasks, we selected a binary named entity linking task (Lin,
Mausam, and Weld 2012; Ling and Weld 2012). Since we
wished to compare different policies on the same data, we
controlled for variations in worker performance by coming
up with a set of 198 questions and hiring 12 oDesk workers,
each of whom completed the entire set. This ensured repro-
ducibility. Our different policies could now request that any
worker perform any problem as they would on a real citizen
science platform. To avoid confounding factors, we random-
ized the order in which workers answered questions, as well
as the order in which possible answers were shown on the
screen.

In order to estimate worker skill and problem difficulty,
we computed a maximum likelihood estimate of these quan-
tities by running gradient descent using gold answers. Note
that in general, these parameters can be estimated with little
data by modeling worker communities and task features, as
discussed previously.

Recall that in each round, each of our workers is as-
signed one of the 198 questions. After each round, for each
policy we calculate the most likely answers to each ques-
tion by running the same EM procedure on the worker re-
sponses. From the predictions, we can calculate the accuracy
achieved by each policy after each round.

Figure 3 compares the performance of our adaptive poli-
cies, using the observed votes from the live experiment.
Since simulating policy runs using all 12 workers would



result in a deterministic procedure for IG and AG, we av-
erage the performance of many simulations that use 8 ran-
domly chosen workers to produce a statistically significant
result. One way to compare the performance of our poli-
cies is to compute the relative labor savings compared to
the round robin policy. First, we compute a desired accuracy
as a fraction of the maximum accuracy obtained by asking
each worker to answer each question, and then compute the
fraction of votes saved by running an adaptive policy com-
pared to the round robin policy. Using this metric, all adap-
tive approaches achieve 95% of the total possible accuracy
using fewer than 50% of the votes required by round robin
to achieve that same accuracy.

In order to tease apart some of the relative differences
between the adaptive policies, we also generated synthetic
data for the 198 questions and 12 workers by randomly sam-
pling worker quality and question difficulty using the param-
eters we estimated from the live experiment. Figure 4 shows
the results of this experiment. IG significantly outperforms
AG, which in turn significantly outperforms UNC, in terms
of fraction of votes saved compared to round robin in or-
der to achieve 95% or 97% of the total possible accuracy
(p < 0.0001 using two-tailed paired t-tests). These results
demonstrate three important points:

• The largest savings are provided by JUGGLERAD (IG),
followed by AG and UNC.

• All three adaptive algorithms significantly outperform the
non-adaptive baselines.

• Although the information gain-based JUGGLERAD
“wins” overall, the other modifications of JUGGLERAD
(AG and UNC) perform very well too, despite providing
no theoretical guarantees.

We also compared these policies in the context of
JUGGLERRT, as shown in Figure 5. In order to simulate
worker response times, we fit log-normal distributions to the
observed response times and sampled from those distribu-
tions. Although the relative benefits are smaller, the ranking
of policies remains the same as in the pure round-based set-
ting, demonstrating the promise of our approach to general-
ize to the more realistic setting of variable worker response
times.

Figure 6 summarizes the relative savings of our policies
in each of these three scenarios outlined above—fixed votes,
simulated votes, and simulated votes with variable response
times. Since there is a clear advantage to IG across scenar-
ios, in the following sections we conduct additional simula-
tions to further characterize its performance and answer our
remaining empirical research questions.

Benefit of Adaptivity
In order to determine the benefit of adaptivity, we generated
synthetic data for 50 questions and 12 workers by randomly
sampling worker quality and question difficulty.

Figure 7 shows the relative labor savings of
JUGGLERAD and JUGGLEROFF compared to the
round robin policy. The desired accuracy is again computed
as a fraction of the maximum accuracy obtained by asking
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Figure 3: In live experiments, JUGGLERAD (IG) reaches
95% of the maximum attainable accuracy with only 48%
of the labor employed by the commonly used round robin
policy (RR).
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Figure 4: In experiments with simulated data using worker
skills and question difficulties estimated from the live exper-
iment, JUGGLERAD (IG) outperforms the accuracy gain
(AG) and uncertainty-based (UNC) policies.
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Figure 5: In live experiments with variable worker response
times, JUGGLERRT (IG) also outperforms the other poli-
cies, despite the need to make assignments in real time as
workers complete tasks.
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Figure 6: Summary of the fraction of savings of IG, AG,
and UNC compared to the round robin policy for reaching
an accuracy of 95% of the total achievable accuracy (from
asking each worker each question).
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Figure 7: The “adaptivity gap.” JUGGLERAD saves signifi-
cantly more human labor than JUGGLEROFF by observing
and responding to responses adaptively.

each worker to answer each question. Our simulation
draws question difficulties uniformly and inverse worker
skills 1/γ ∼ N (0.79, 0.29), a realistic distribution that fits
estimates from the live experiment. JUGGLERAD saves
significantly more labor than JUGGLEROFF underscoring
the value of adaptive routing compared to offline.

Varying Worker Skills and Task Difficulties
We now investigate how various parameter distributions af-
fect adaptive performance. Again, we generated synthetic
data for 50 questions and 12 workers. Figure 8 shows that
the relative savings of JUGGLERAD over round robin in-
creases as the pool of workers becomes more diverse. We
control the experiment by again sampling difficulties uni-
formly and using our earlier worker skill distribution, but
varying the standard deviation from σ = 0 to σ = 0.2. Like
before, accuracies are computed as a fraction of the total
achievable accuracy given a set of workers. Our algorithms
perform better for larger values of σ because they are able
to exploit differences between workers to make the best as-
signments.
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Figure 8: The benefit provided by JUGGLERAD increases
as the pool of workers becomes more diverse.

Increasing the diversity of question difficulties while
keeping the skill distribution fixed produces similar savings.
For example, sampling difficulties from a Beta distribution
with a single peak produces relative savings over round
robin that are significantly less than sampling uniformly or
from a bimodal distribution.

Scaling to Many Tasks and Workers
In order to empirically validate the speed and allocation ef-
fectiveness of our proposed scaling strategies, we experi-
mented with data simulating a larger number of workers and
questions (100 and 2000, respectively) using the same ques-
tion difficulty and worker skill settings as in the earlier adap-
tivity experiment. Without imposing a limit on the number
of simultaneously-operating workers per task, it is infeasi-
ble to run JUGGLERAD on problems of this size. We first
checked to see if there was a drop in question-answering
performance caused by limiting the number of workers as-
signed to a given task in each round. We found no statisti-
cally significant difference between limiting the number of
workers per task to 1, 2, or 3 (at the 0.05-significance level
using one-tailed paired t-tests to measure the fraction of
votes saved to reach various thresholds). This result matches
our experience running smaller experiments.

Restricting the number of workers per task to a small
number reduces JUGGLERAD’s scheduling time to 10–15
seconds2 per round (scheduling 100 workers), but this is still
significantly longer than the fraction-of-a-second schedul-
ing times for our earlier experiments with 12 workers and
198 questions. JUGGLERBIN, by contrast, is able to sched-
ule workers in fewer than 3 seconds for any number of bins
we tried (202, 402, 802, and 1602). Indeed, JUGGLERBIN
makes assignments using O(|W|2) computations, which is
drastically better than O(|W||Q|) for the unbinned version
when there are many questions. Although our runtime anal-
ysis for JUGGLERBIN includes an additional term on the
order of |W|C2, in practice this cost is much smaller since
we do not need to traverse all bins in order to find a valuable

2All reported runtimes use an unoptimized implementation on a
single machine with two 2.66 GHz processors and 32 GB of RAM.
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Figure 9: Increasing the parameter C governing the num-
ber of bins enables JUGGLERBIN to closely approximate
JUGGLEROFF.

question to assign to a worker.
Finally, the performance of JUGGLERBIN approaches

that of the unbinned algorithms as we increase the value of
the parameter C, since smaller bins more closely approxi-
mate the true utility values. Figure 9 shows the results of this
experiment. JUGGLERBIN asymptotes at a slightly lower
accuracy than the unbinned approach, suggesting that more
sophisticated approaches like adaptive binning may produce
further gains.

Related Work
Previous work has considered task routing in a number of
restricted settings. Some approaches (Karger, Oh, and Shah
2011a; 2011b; 2013) assume worker error is independent of
problem difficulty and hence gain no benefit from adaptive
allocation of tasks.

Most adaptive approaches, on the other hand, assign prob-
lems to one worker at a time, not recognizing the cost
of leaving a worker idle (Donmez, Carbonell, and Schnei-
der 2009; Yan et al. 2011; Wauthier and Jordan 2011;
Chen, Lin, and Zhou 2013). Other adaptive approaches as-
sume that a requester can immediately evaluate the qual-
ity of a worker’s response (Ho and Vaughan 2012; Tran-
Thanh et al. 2012), or wait for a worker to complete all
her tasks before moving on to the next worker (Ho, Jab-
bari, and Vaughan 2013). Some, unlike ours, also assume
that any given question can be assigned to just one worker
(Tran-Thanh et al. 2012). Moreover, the adaptive approach
that best models real workers optimizes annotation accuracy
by simply seeking to discover the best workers and use them
exclusively (Chen, Lin, and Zhou 2013).

The Generalized Task Markets (GTM) framework (Sha-
haf and Horvitz 2010) has much in common with our prob-
lem; they seek to find a coalition of workers whose multi-
attribute skills meet the requirements of a job. However, the
GTM approach assumes a binary utility model (tasks are
completed or not) – it does not reason about answer accu-
racy. Kamar et al. (2012) also focus on citizen science, but
don’t perform task routing.

Conclusions and Future Work
In citizen science and other types of volunteer crowdsourc-
ing, it is important to send hard tasks to experts while still
utilizing novices as they become proficient. Since workers
are impatient, a task router should allocate questions to all
available workers in parallel in order to keep workers en-
gaged. Unfortunately, choosing the optimal set of tasks for
workers is challenging, even if worker skill and problem dif-
ficulty are known.

This paper introduces the JOCR framework, characteriz-
ing the space of task routing problems based on adaptivity,
concurrency and amount of information known. We prove
that even offline task routing is NP-hard, but submodularity
of the objective function (maximizing expected value of in-
formation) enables reasonable approximations. We present
JUGGLEROFF and JUGGLERAD, two systems that per-
form parallel task allocation for the offline and adaptive set-
tings respectively. Using live workers hired on oDesk, we
show that our best routing algorithm uses just 48% of the la-
bor required by the commonly used round-robin policy on
a natural language named-entity linking task. Further, we
present JUGGLERBIN, a system that can scale to many
workers and questions, and JUGGLERRT, a system that
handles variable worker response times and yields similar
empirical savings.

Much remains to be done. While we have been motivated
by volunteer labor from a citizen science scenario, we be-
lieve our methods extend naturally to paid crowdsourcing
where the utility function includes a linear cost component.
In the future we hope to relax the assumptions of perfect in-
formation about workers and tasks, using techniques from
multi-armed bandits to learn these parameters during the
routing process. We also wish to study the case where sev-
eral different requesters are using the same platform and the
routing algorithm needs to balance workers across problem
types.
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