
Towards a Language for Non-Expert Specification of POMDPs for Crowdsourcing

Christopher H. Lin Mausam Daniel S. Weld
Department of Computer Science and Engineering

University of Washington
Seattle, WA 98195

{chrislin,mausam,weld}@cs.washington.edu

Introduction Crowdsourcing requesters are trapped be-
tween a rock and a hard place. Typically they specify
their crowdsourcing workflows procedurally, but current
languages commit them to overly strict and static policies
that waste human effort. While optimizing workflows with
more sophisticated tools like POMDPs can significantly re-
duce labor costs, such advanced AI techniques are hard to
use and understand. We report on our progress in develop-
ing CLOWDER, a recently proposed system that would al-
low crowdsourcing requesters to achieve both their desires
(Weld, Mausam, and Dai 2011). Such a system frees re-
questers from needing to resort to sub-optimal techniques
that use approximate heuristics or hire a planning expert to
formally define and solve their problems.

CLOWDER provides the user with an adaptive program-
ming language (extending (Pinto et al. 2010; McAllester
1999) to handle partial observability and non-expert us-
ability) that looks and feels like Lisp, yet abstracts over
POMDPs so that non-experts can write POMDPs without
knowing anything about them. For instance, suppose a re-
quester would like to write a dynamic workflow that uses
crowdsourcing to label training data. An adaptive program
that achieves this goal might poll crowd workers for la-
bels until the system is “confident” it can stop and return
a label. However, for this program to make optimal deci-
sions, or in other words, for it to know when it is confi-
dent enough to stop, it needs to both maintain some state
that represents a current belief about what the correct label
is, and know how to update this belief after every label ob-
servation. Therefore, for requesters to write such programs,
they must understand not only how to model some world dy-
namics, but also how to update probabilistic beliefs. Instead
of hiring a planning expert to write such a program or to
handcraft a custom POMDP for this simple voting problem
(Dai, Mausam, and Weld 2010; Kamar, Hacker, and Horvitz
2012), requesters who are unfamiliar with AI should be able
to write a very simple program that abstracts away from state
variables, probabilities, and notions of “confidence”: either
ask another worker for another label and recurse, or return
the label with the most number of votes. CLOWDER provides
such functionality.

Figure 1 shows a CLOWDER program for labeling (vot-

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

(define (vote q a0 a1 c0 c1)
(choose
(if (crowd-vote q a0 a1)

(vote q a0 a1 (+ c0 1) c1)
(vote q a0 a1 c0 (+ c1 1)))

(if (> c0 c1) #t #f)))

Figure 1: A CLOWDER program for labeling that manages
uncertainty without exposing it to the user. q is an input
question, a0,a1 are two possible answers, and c0,c1
count the number of votes for each choice.

ing) that implements the algorithm we just described. It as-
sumes there are two possible labels and reposes the prob-
lem as one of discovering if the first label is better than the
second. Notice that the program makes no reference to any
POMDP components in its definition. Any requester who
can program can write the program. The programmer does
not need to specify some hidden state that represents the cor-
rect answer. Instead, the programmer provides a choice point
in the program, and CLOWDER automatically compiles the
program into a POMDP, and then produces an optimal pol-
icy that determines the optimal branch to take at runtime.

Suppose a requester wanted to write the iterative-
improvement workflow (Little et al. 2009). Figure 2 shows
a program written in the CLOWDER language that uses
iterative-improvement to crowdsource a caption for an im-
age. There are three choice points. The program can either
improve the best caption so far, or it can ask a worker about
which of the current captions is better and recurse with the
new information, or it can return the best caption. Again, no-
tice that the program contains no references to uncertainty
of any kind. It also allows the user to use the already written
vote program, just like an ordinary programming language.

The High Level Details We now use a simple example
program (Figure 3) to provide a high level understanding
of how CLOWDER works. The program, improve, might
be one that a crowdsourcing expert would write for improv-
ing a piece of text. It is a simplified version of iterative-
improvement that removes voting. Indeed, it just repeat-
edly improves the text until it decides the text is improved
enough, and then terminates by returning the text.

The semantics of a CLOWDER program incorporate un-



(define (it-i image worse-text better-text)
(choose

(it-i image better-text
(c-imp better-text))

(if (vote image better-text
worse-text 0 0)

(it-i image worse-text better-text)
(it-i image better-text worse-text))

better-text))

Figure 2: A CLOWDER program for iterative-improvement
on descriptions for images.

(define (improve text)
(choose

(improve (c-imp text))
text)))

Figure 3: A CLOWDER program for improving a piece of
text. text is the current text.

certainty. While to the non-expert user the behavior is as ex-
pected, the user with knowledge of AI understands that in
the execution of a CLOWDER program, all variables are ac-
tually bound to two values, and thus all expressions evaluate
to two values. The first value, the Normal value, is the usual
value that the non-expert user sees and understands, and is
the same as it would be in any other programming language.
For example, the argument text is bound to a string. The
second value is a Clowder value that can be unobservable,
and hence will be represented by a distribution in the system.
This value is the value of a state variable in the POMDP that
CLOWDER compiles from the program.

Since users can not be expected to define the domains of
CLOWDER values, CLOWDER bootstraps by relying on con-
tributions from experts. The CLOWDER system contains a
library of primitives, which experts may contribute to. Prim-
itives are essentially probabilistic models of functions. For
instance, improve uses the primitive c-imp. To the non-
expert user, c-imp is an API call to some labor market that
will return an improved piece of text. Since c-imp is a
primitive, an expert has defined a model for it. The model
both describes the domain of the argument, and provides a
stochastic description of the output given the inputs. For in-
stance, the expert can define the CLOWDER value of the ar-
gument to c-imp to be some q ∈ [0, 1] to represent the un-
observable quality of the text. Further, the expert can spec-
ify the probability that an output text has quality q = 0.5
given that the input text has quality q = 0.2 to be 0.8. Then,
CLOWDER infers that the domains of all the text variables
are also [0, 1]. CLOWDER will also be able to maintain a dis-
tribution over the possible qualities that text can have at
all points in the program. When defining a primitive, the ex-
pert must also specify a cost for the primitive (e.g., the cost
of c-imp can be 5 cents).

Utilities and Goals We now address how users can tell
CLOWDER what they believe is optimal behavior. Since op-

timality is different for every user, we need the flexibility to
construct different utility functions or goals for individual
users. CLOWDER assumes that executing a primitive incurs
a cost defined by the primitive, but that the user uses one
of CLOWDER’s goal or utility eliciation modules to provide
information about the overall program objective.

For instance, for the voting program, CLOWDER provides
an accuracy module that simply asks the user for a desired
accuracy, and converts the desired accuracy into a goal be-
lief state. Such a module can work equally well for any pro-
gram that outputs a “correct answer.” In CLOWDER, the user
can simply specify this module as the goal module for their
program. A user can also limit the amount of money that is
spent, by writing a budget into the program.

However, we note that this accuracy module is actually
unable to guarantee the desired accuracy. Since CLOWDER
does not know the ground truth, the best it can do is guaran-
tee an expected accuracy. The user may actually end up with
much worse results. If such behavior is unacceptable to the
user, CLOWDER can also provide a best-effort module that
does not require input from the user, but simply attaches a
positive utility for returning the correct answer. Such a mod-
ule can be useful, for example, when the user has many la-
belling tasks that need to be solved. If the user includes a
budget in the program, CLOWDER then spends the entirety
of the budget and does the best it can by dynamically figur-
ing out how much money to put into each task so that harder
tasks receive more of the budget.

Final Thoughts We note that CLOWDER is still a work-
in-progress, and requires a user study to prove ease-of-use.
Additionally, CLOWDER would benefit from a wider vari-
ety of modules that address different kinds of programs, like
those that return artifacts with intrinsic qualities. CLOW-
DER would also benefit from a typed language, so that
users can more easily use primitives. We end by observing
that since CLOWDER relies on expert-defined primitives and
goal/utility modules, it is coincidentally a crowdsourced sys-
tem that delivers crowdsourcing systems.

Acknowledgements We thank the anonymous reviewer
for their comments. This work was supported by the WRF
/ TJ Cable Professorship, Office of Naval Research grant
N00014-12-1-0211, and National Science Foundation grants
IIS 1016713 and IIS 1016465.

References
Dai, P.; Mausam; and Weld, D. S. 2010. Decision-theoretic control
of crowd-sourced workflows. In AAAI.
Kamar, E.; Hacker, S.; and Horvitz, E. 2012. Combining human
and machine intelligence in large-scale crowdsourcing. In AAMAS.
Little, G.; Chilton, L. B.; Goldman, M.; and Miller, R. C. 2009.
Turkit: tools for iterative tasks on mechanical turk. In KDD-
HCOMP, 29–30.
McAllester, D. 1999. Bellman equations for stochastic programs.
Pinto, J.; Fern, A.; Bauer, T.; and Erwig, M. 2010. Robust learning
for adaptive programs by leveraging program structure. In ICMLA.
Weld, D. S.; Mausam; and Dai, P. 2011. Human intelligence needs
artificial intelligence. In HCOMP.


